The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In the field of fabric manufacturing, many factories still utilise the traditional manual detection method. It requires a lot of labour, resulting in high error rates and low efficiency. In this paper, we represent a real-time automated detection method based on object as point. This work makes three attributions. First, we build a fabric defects database and augment the data to training the intelligence model. Second, we provide a real-time fabric defects detection algorithm, which have potential to be applied in manufacturing. Third, we figure out CenterNet with soft NMS will improved the performance in fabric defect detection area, which is considered an NMS-free algorithm. Experiment results indicated that our lightweight network based method can effectively and efficiently detect five different fabric defects.

Keywords

Fabric Defects Detection, Object As Point, Data Augmentation, Deep Learning.
User
Notifications
Font Size