The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


Ransomware attacks are on the rise and attackers are hijacking valuable information from different critical infrastructures and businesses requiring ransom payments to release the encrypted files. Payments in cryptocurrencies are designed to evade tracing the transactions and the recipients. With anonymity being paramount, tracing cryptocurrencies payments due to malicious activity and criminal transactions is a complicated process. Therefore, the need to identify these transactions and label them is crucial to categorize them as legitimate digital currency trade and exchange or malicious activity operations. Machine learning techniques are utilized to train the machine to recognize specific transactions and trace them back to malicious transactions or benign ones. I propose to work on the Bitcoin Heist data set to classify the different malicious transactions. The different transactions features are analyzed to predict a classifier label among the classifiers that have been identified as ransomware or associated with malicious activity. I use decision tree classifiers and ensemble learning to implement a random forest classifier. Results are assessed to evaluate accuracy, precision, and recall. I limit the study design to known ransomware identified previously and made available under the Bitcoin transaction graph from January 2009 to December 2018.

Keywords

Ransomware, Classification, Decision Tree, Random Forest, Ensemble Learning, Bitcoin, Blockchain, BitcoinHeist, Machine Learning.
User
Notifications
Font Size