The huge volume of text documents available on the internet has made it difficult to find valuable information for specific users. In fact, the need for efficient applications to extract interested knowledge from textual documents is vitally important. This paper addresses the problem of responding to user queries by fetching the most relevant documents from a clustered set of documents. For this purpose, a cluster-based information retrieval framework was proposed in this paper, in order to design and develop a system for analysing and extracting useful patterns from text documents. In this approach, a pre-processing step is first performed to find frequent and high-utility patterns in the data set. Then a Vector Space Model (VSM) is performed to represent the dataset. The system was implemented through two main phases. In phase 1, the clustering analysis process is designed and implemented to group documents into several clusters, while in phase 2, an information retrieval process was implemented to rank clusters according to the user queries in order to retrieve the relevant documents from specific clusters deemed relevant to the query. Then the results are evaluated according to evaluation criteria. Recall and Precision (P@5, P@10) of the retrieved results. P@5 was 0.660 and P@10 was 0.655.
Keywords
Cluster Analysis, Documents Analysis, Information Retrieval, Text Mining.
User
Font Size
Information