Open Access
Subscription Access
An Adaptive Network-Based Approach for Advanced Forecasting Of Crypto Currency Values
This paper describes an architecture for predicting the price of cryptocurrencies for the next seven days using the Adaptive Network Based Fuzzy Inference System (ANFIS). Historical data of cryptocurrencies and indexes that are considered are Bitcoin (BTC), Ethereum (ETH), Bitcoin Dominance (BTC.D), and Ethereum Dominance (ETH.D) in a daily timeframe. The methods used to teach the data are hybrid and backpropagation algorithms, as well as grid partition, subtractive clustering, and Fuzzy C-means clustering (FCM) algorithms, which are used in data clustering. The architectural performance designed in this paper has been compared with different inputs and neural network models in terms of statistical evaluation criteria. Finally, the proposed method can predict the price of digital currencies in a short time.
Keywords
Cryptocurrency price prediction; ANFIS; Semi-automatic system; Machine learning
User
Font Size
Information
- S. A. Alahmari, “Using machine learning ARIMA to predict the price of cryptocurrencies,” Int. J. Futur. Gener. Commun. Netw., vol. 13, no. 1, pp. 745–752, 2020.
- E. Pintelas, I. E. Livieris, S. Stavroyiannis, T. Kotsilieris, and P. Pintelas, “Investigating the Problem of Cryptocurrency Price Prediction: A Deep Learning Approach,” IFIP Adv. Inf. Commun. Technol., vol. 584 IFIP, pp. 99–110, 2020, doi: 10.1007/978-3-030-49186-4_9.
- A. A. Petukhina, R. C. G. Reule, and W. K. Härdle, “Rise of the machines? Intraday high-frequency trading patterns of cryptocurrencies,” Eur. J. Financ., 2020, doi: 10.1080/1351847X.2020.1789684.
- H. Jazayeriy and M. Daryani, “SPA Bot: Smart price-action trading Bot for cryptocurrency market,” 2021 12th Int. Conf. Inf. Knowl. Technol. IKT 2021, pp. 178–182, 2021, doi: 10.1109/IKT54664.2021.9685662.
- F. Rundo, F. Trenta, A. L. di Stallo, and S. Battiato, “Grid trading system robot (GTSbot): A novel mathematical algorithm for trading FX market,” Appl. Sci., vol. 9, no. 9, 2019, doi: 10.3390/app9091796.
- I. Publishing, “Cryptocurrency price prediction: a machine learning approach,” vol. 244, no. 5, pp. 44–47, 2020.
- H. Fatah, R. A. Anggraini, D. Supriadi, M. W. Pertiwi, A. I. Warnilah, and N. Ichsan, “Data mining for cryptocurrencies price prediction,” J. Phys. Conf. Ser., vol. 1641, p. 012059, 2020, doi: 10.1088/1742-6596/1641/1/012059.
- K. Chourmouziadis and P. D. Chatzoglou, “An intelligent short term stock trading fuzzy system for assisting investors in portfolio management,” Expert Syst. Appl., vol. 43, pp. 298–311, 2016, doi: 10.1016/j.eswa.2015.07.063.
- D. Vezeris, T. Kyrgos, I. Karkanis, and V. Bizergianidou, “Automated trading systems’ evaluation using d-Backtest PS method and WM ranking in financial markets,” Invest. Manag. Financ. Innov., vol. 17, no. 2, pp. 198–215, 2020, doi: 10.21511/imfi.17(2).2020.16.
- J. Ma, H. Silin, and S. H. Kwok, “An enhanced artificial neural network for stock price predications,” Int. J. Bus. Econ. Dev., vol. 4, no. 3, pp. 28–33, 2016.
- L. Trujillo, P. Melin, J. Soto, O. Castillo, and J. Soria, “A new approach for time series prediction using ensembles of ANFIS models Related papers”, doi: 10.1016/j.eswa.2011.09.040.
- G. S. Atsalakis, I. G. Atsalaki, F. Pasiouras, and C. Zopounidis, “Bitcoin price forecasting with neuro-fuzzy techniques,” no. xxxx, pp. 1–11, 2019, doi: 10.1016/j.ejor.2019.01.040.
- G. S. Atsalakis and K. P. Valavanis, “Forecasting stock market short-term trends using a neuro-fuzzy based methodology,” Expert Syst. Appl., vol. 36, no. 7, pp. 10696–10707, 2009, doi: 10.1016/j.eswa.2009.02.043.
- B. KUTLU KARABIYIK and Z. CAN ERGÜN, “Forecasting bitcoin prices with the ANFIS model,” Dicle Üniversitesi İktisadi ve İdari Bilim. Fakültesi Derg., vol. 11, no. 22, pp. 295–315, 2021, doi: 10.53092/duiibfd.970900.
- M. N. M. Salleh and K. Hussain, “A Review of Training Methods of ANFIS for Applications in Business and Economics,” Int. J. u- e- Serv. Sci. Technol., vol. 9, no. 7, pp. 165–172, 2016, doi: 10.14257/ijunesst.2016.9.7.17.
- M. Göçken, M. Özçalici, A. Boru, and A. T. Dosdoʇru, “Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction,” Expert Syst. Appl., vol. 44, pp. 320–331, 2016, doi: 10.1016/j.eswa.2015.09.029.
- Ahadian, P., Babaei, M., & Parand, K. Using singular value decomposition in a convolutional neural network to improve brain tumor segmentation accuracy.
- Ahadian, P., & Parand, K. (2022). Support vector regression for the temperature- stimulated drug release. Chaos, Solitons & Fractals, 165, 112871.
- Mehrban, Ali, and Pegah Ahadian. "Evaluating BERT and ParsBERT for Analyzing Persian Advertisement Data." International Journal on Natural Language Computing (IJNLC) Vol 12 (2023).
Abstract Views: 223
PDF Views: 73