Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Comparative Study of Evolutionary Algorithms to Generate Flat-Top Beam Pattern for Synthesis of a Linear Antenna Array


Affiliations
1 Department of Electrical and Electronics Engineering, Oriental University, India
2 Department of Electronics and Communication Engineering, Guru Nanak Institutions, India
3 Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
4 Department of Electronics and Communication Engineering, Noida Institute of Engineering and Technology, India
5 Department of Electronics and Communication Engineering, Anil Neerukonda Institute of Technology and Sciences, India
     

   Subscribe/Renew Journal


In the present paper three evolutionary algorithms are compared and discussed for synthesizing a linear array of dipole antenna of half-wavelength oriented horizontally. All the dipoles are mutually coupled and designed to radiate the flat-top beam (FTB) pattern including multiple single null steering with little ripple deviation. The adopted evolutionary algorithms are; flower pollination algorithm (FPA), firefly algorithm (FA) and back tracking search algorithm (BSA), respectively. These algorithms are then combined with an efficient Inverse Fast Fourier Transform (IFFT) for reduction in the computation of evaluating time meaningfully. The required synthesis is attained by generating the current amplitudes at 00 and 1800 using binary phase shifters for the antenna array. The performance analysis of key antenna parameters along with the statistical parameters is achieved with the help of the optimization process and compared. In this paper, the MATLAB tool is used as a validation tool and the obtained simulation results are very satisfying and acceptable.

Keywords

Antenna Array, Backtracking Search Algorithm, Firefly Algorithm, Flower Pollination Algorithm, Flat-Beam Pattern, Side Lobe Level, Single Null Placement, Ripple, VSWR.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Comparative Study of Evolutionary Algorithms to Generate Flat-Top Beam Pattern for Synthesis of a Linear Antenna Array

Abstract Views: 410  |  PDF Views: 1

Authors

Hemant Patidar
Department of Electrical and Electronics Engineering, Oriental University, India
Vikas Maheshwari
Department of Electronics and Communication Engineering, Guru Nanak Institutions, India
Rajib Kar
Department of Electronics and Communication Engineering, National Institute of Technology, Durgapur, India
Prasanna Kumar Singh
Department of Electronics and Communication Engineering, Noida Institute of Engineering and Technology, India
Vijay Kumar Sahu
Department of Electronics and Communication Engineering, Anil Neerukonda Institute of Technology and Sciences, India

Abstract


In the present paper three evolutionary algorithms are compared and discussed for synthesizing a linear array of dipole antenna of half-wavelength oriented horizontally. All the dipoles are mutually coupled and designed to radiate the flat-top beam (FTB) pattern including multiple single null steering with little ripple deviation. The adopted evolutionary algorithms are; flower pollination algorithm (FPA), firefly algorithm (FA) and back tracking search algorithm (BSA), respectively. These algorithms are then combined with an efficient Inverse Fast Fourier Transform (IFFT) for reduction in the computation of evaluating time meaningfully. The required synthesis is attained by generating the current amplitudes at 00 and 1800 using binary phase shifters for the antenna array. The performance analysis of key antenna parameters along with the statistical parameters is achieved with the help of the optimization process and compared. In this paper, the MATLAB tool is used as a validation tool and the obtained simulation results are very satisfying and acceptable.

Keywords


Antenna Array, Backtracking Search Algorithm, Firefly Algorithm, Flower Pollination Algorithm, Flat-Beam Pattern, Side Lobe Level, Single Null Placement, Ripple, VSWR.

References