Open Access
Subscription Access
Open Access
Subscription Access
3D Face Recognition from Range Images Based on Curvature Analysis
Subscribe/Renew Journal
In this paper, we present a novel approach for three-dimensional face recognition by extracting the curvature maps from range images. There are four types of curvature maps: Gaussian, Mean, Maximum and Minimum curvature maps. These curvature maps are used as a feature for 3D face recognition purpose. The dimension of these feature vectors is reduced using Singular Value Decomposition (SVD) technique. Now from calculated three components of SVD, the non-negative values of 'S' part of SVD is ranked and used as feature vector. In this proposed method, two pair-wise curvature computations are done. One is Mean, and Maximum curvature pair and another is Gaussian and Mean curvature pair. These are used to compare the result for better recognition rate. This automated 3D face recognition system is focused in different directions like, frontal pose with expression and illumination variation, frontal face along with registered face, only registered face and registered face from different pose orientation across X, Y and Z axes. 3D face images used for this research work are taken from FRAV3D database. The pose variation of 3D facial image is being registered to frontal pose by applying one to all registration technique then curvature mapping is applied on registered face images along with remaining frontal face images. For the classification and recognition purpose five layer feed-forward back propagation neural network classifiers is used, and the corresponding result is discussed in section 4.
Keywords
Curvature Analysis, 3D Image, Image Registration, Face Recognition, FRAV3D Database.
Subscription
Login to verify subscription
User
Font Size
Information
Abstract Views: 378
PDF Views: 0