Open Access
Subscription Access
Open Access
Subscription Access
Automatic License Plate Recognition Using Image Processing and Neural Network
Subscribe/Renew Journal
In recent times, the number of vehicles on road has exponentially risen due to which traffic congestion and violations are a menace on roads. Automatic License Plate Recognition system can be used to automate the process of traffic management thereby easing out the flow of traffic and strengthening the access control systems. In this paper, we compare the efficiency achieved by morphological processing and edge processing algorithms. A detailed analysis and optimization of neural network parameters such as regularization parameter, number of hidden layer units and number of iterations is done. Here, a scheme is designed for implementation in real time and controlled using a graphical user interface suitable for the application of parking security in offices, institutions, malls, etc. The system utilizes image processing techniques and machine learning algorithms running on matlab and Raspberry Pi 2B to obtain the results with an efficiency of 97%.
Keywords
License Plate Recognition, Edge Processing, Vertical Projection, Horizontal Projection, Neural Network, Back Propagation Algorithm.
Subscription
Login to verify subscription
User
Font Size
Information
- N. Saleem, H. Muazzam, H.M. Tahir and U. Farooq, “Automatic License Plate Recognition using Extracted Features”, Proceedings of 4th International Symposium on Computational and Business Intelligence, pp. 221-225, 2016.
- K. Makaoui, Z. Guennoun and M. Ghogho, “Improved License Plate Localization”, Proceedings of IEEE International Conference on Electrical and Information Technologies, pp. 402-405, 2016.
- R. Islam, K.F. Sharif and S. Biswas, “Automatic Vehicle Number Plate Recognition using Structured Elements”, Proceedings of IEEE International Conference on Systems, Process and Control, pp. 44-48, 2015.
- P. Prabhakar, P. Anupama and S.R. Resmi, “Automatic Vehicle Number Plate Detection and Recognition”, Proceedings of IEEE International Conference on Control, Instrumentation, Communication and Computational Technologies, pp. 185-190, 2014.
- J. Chong, C. Tianhua and J. Linhao, “License Plate Recognition based on Edge Detection Algorithm”, Proceedings of 9th IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 395-398, 2013.
- K.M. Hung and C.T. Hsieh, “A Real-Time Mobile Vehicle License Plate Detection and Recognition”, Tamkang Journal of Science and Engineering, Vol. 13, No. 4, pp. 433-442, 2010.
- A. Puranic, K.T. Deepak and V. Umadevi, “Vehicle Number Plate Recognition System: A Literature Review and Implementation using Template Matching”, International Journal of Computer Applications, Vol. 134, No. 1, pp. 12-16, 2016.
- P. Sai Krishna, “Automatic Number Plate Recognition by using Matlab”, International Journal of Innovative Research in Electronics and Communications, Vol. 2, No. 4, pp. 1-7, 2015.
- M.S. Pan, J.B. Yan and Z.H. Xiao, “Vehicle License Plate Character Segmentation”, International Journal of Automation and Computing, Vol. 5, No. 4, pp. 425-432, 2008.
- X. Zhai, F. Bensaali and R. Sotudeh, “OCR-based Neural Network for ANPR”, Proceedings of 9th IEEE International Conference on Imaging Systems and Techniques, pp. 393397, 2012.
- N. Otsu, “A Threshold Selection Method from gray-Level Histograms”, Automatica, Vol. 11, No. 2, pp. 23-27, 1975.
- Photo Modules for PCM Remote Control Systems, Available at: https://media.digikey.com/pdf/data%20sheets/vishay%20ir %20pdfs/tsop%2017...pdf
Abstract Views: 306
PDF Views: 7