





COV-CT-NET - A Deep Learning Model for COVID-19, Community-Acquired Pneumonia Detection Using CT Images
Subscribe/Renew Journal
The world has witnessed the deadly impact of the Novel Corona Virus (COVID-19), claiming millions of lives since its outbreak in early December 2019. Early virus detection plays a crucial role in controlling this highly contagious disease. Though Reverse Transcription Polymerase Chain Reaction (RT-PCR) is the current standard for confirmation of COVID-19, it is time-consuming. Computed Tomography (CT) imaging of the lungs can preferably be used for fast diagnosis of the disease as it is more sensitive and can detect complications. Due to the unavailability of adequate expertise, a deep learning-based model on CT images is a potential solution for fast detecting SARS Cov2 virus. In this study, we developed a simple but robust Convolution Neural Network model with multiclass detection ability between normal lungs, COVID-19 infected lungs and any other Community-Acquired Pneumonia (CAP) infection using Chest CT images. It is tested on a publicly available dataset, COVID-CT-MD and it achieved slice level accuracy of 99% on test dataset. We also attempted slice-level prediction of the unlabelled slices available in the dataset of COVID-19 and CAP cases.
Keywords
COVID-19 Detection, CAP, CT Imaging, CNN, Deep Learning
Subscription
Login to verify subscription
User
Font Size
Information