The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


Applying a Continuously Variable Transmission (CVT) in an automotive driveline has several advantages. A CVT can operate at a wider range of transmission ratios, therefore the engine can be operated more efficiently than with a stepped transmission. The present research focuses on the influence of loading conditions on the slip behaviour and torque transmission of the CVT. The CVT model is developed to investigate the range of clamping forces needed to initiate the transmission and to successfully meet the oil pressure requirements. An analytical approach is used to calculate the possible transmission efficiency and traction coefficient of the push belt CVT. The experimental setup and the instrumentation are presented in detail. The measured results are presented in more detail for the V-belt type variator and oil pressure reapplication by a separate hydraulic unit and reduction ratio of CVT.

Keywords

Continuously Variable Transmission, Metal-Push Belt, Slip Characteristics, Clamping Force, Modelling.
User
Subscription Login to verify subscription
Notifications
Font Size