The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


Magnetorheological (MR) dampers are evolving as one of the most promising devices for semi-active vibration control of various dynamic systems. In this paper, the suspension system of a car using MR damper is analysed for 2DOF quarter car and 4DOF half car models and then compared with corresponding suspension system using passive damper for ride comfort and handling. Magnetorheological damper is fabricated using a MR fluid of Carbonyl iron powder and Silicone oil added with additive. Experiments are conducted to establish the behaviour of the MR damper and are used to validate Spencer model for MR damper. Further, using the validated Spencer model of MR damper, the quarter car and half car models of Vehicle Suspension system are simulated by implementing a semi-active suspension system for analysing the resulting displacement and acceleration in the car body. The ride comfort and vehicle handling performance of each specific vehicle model with passive suspension system are compared with corresponding semi-active suspension system. The simulation and analysis are carried out using MATLAB/SIMULINK.

Keywords

Magnetorheological Dampers, Suspension Systems, Spencer Model, Simulation and Fabrication of MR Damper.
User
Subscription Login to verify subscription
Notifications
Font Size