The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


The world’s climatic conditions rises and there is a demand for environment friendly vehicle designs. The automobile industry strives hard to ensure low carbon emissions. This refers to the mass reduction and fuel consumption. This paper investigates to achieve the overall Body-in-white (BIW) bending and torsion stiffness performance using Topology optimization and light weight internal reinforcements. The potential opportunity of achieving light weight structure using the efficient way of defining the internal reinforcements has been investigated. BIW at the conceptual design phase has been considered for the research. Topology optimization was performed considering the roof rail and the rocker as the design space with an approach of achieving the improved torsion and bending stiffness performance. The optimized bulk head design locations have improved the BIW stiffness performance with minimal mass increase in the BIW. This method can be widely used at various stages of the BIW design to identify the weaker sections and then design the load path using internal reinforcements effectively. The optimized internal reinforcements has achieved higher torsion and bending performance with minimal mass addition.

Keywords

Design of Experiments, Optimization, Body-In-White Stiffness, Multi Objective, Bending, Torsion, Bulk Heads.
User
Subscription Login to verify subscription
Notifications
Font Size