The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


Vehicle monitoring is a very important part in the intelligent transportation systems towards real-time monitoring of intersection traffic condition, the dynamic traffic incident detection and traffic parameter extraction. This paper proposes a vehicle tracking method based on mean shift. During the detection period, tracking objects of vehicles are constructed. The current vehicle position is predicted from the target area of former frame. In the candidate area of the target image, foreground area mask is adopted as a condition whether a pixel is selected; this makes the colour probability density to more accurately reflect the characteristics of the vehicle, and avoids the background region's influence on the mean shift iterations. Experiments show that this method can effectively detect the position of the vehicle, and provides an effective vehicle tracking method in the intelligent transportation system.

Keywords

Vehicle Tracking, Colour Probability Density, Vehicle Detection.
User
Subscription Login to verify subscription
Notifications
Font Size