Open Access
Subscription Access
Numerical Analysis of a Semi-Infinite Solid with Temperature Dependent Thermal Conductivity using Truly Meshfree Method
Subscribe/Renew Journal
This article presents Meshless Local Petrov-Galerkin (MLPG) method to obtain the numerical solution of linear and non-linear heat conduction in a semi-infinite solid object with specific heat flux. Moving least square approximants are used to approximate the unknown function of temperature T(x) with Th(x). These approximants are constructed by using a linear basis, a weight function and a set of non-constant coefficients. Essential boundary condition is imposed by the penalty function method. A predictor-corrector scheme based on direct substitution iteration has been applied to address the non-linearity and two-level method for temporal discretization. The accuracy of MLPG method is verified by comparing the results for the simplified versions of the present model with the exact solutions. Once the accuracy of MLPG method is established, the method is further extended to investigate the effects of temperature-dependent properties.
Keywords
Transient, Temperature Dependent, Semi-Infinite Solid, Penalty Method, Heat Flux, Meshless Local Petrov-Galerkin.
User
Subscription
Login to verify subscription
Font Size
Information
- C.M. Jadhav and B. R. Ahirrao. 2013. Heat conduction problem on semi-infinite solid cylinder with heat source, Int. J. Sci. and Energy Research, 4(8), 90-93.
- M.N. Ozisik. 1993. Heat Conduction, 2nd Ed., John Wiley and Sons.
- L.M. Jiji. 2000. Heat Conduction, 1st Ed., Begell House.
- H. S. Carslaw and J.C. Jaeger. 1959. Conduction of Heat in Solids, 2nd Ed., Oxford University Press.
- N. Bianco, O. Manca, S. Nardini and S. Tamburrino. 2008. A numerical model for transient heat conduction in semi-infinite solids irradiated by a moving heat source, Proc. COMSOL Conf.
- L.M. Chang. 1986. Transient heat conduction in semiinfinite solids with temperature dependent properties, Technical Report BRL-TR-2720, U.S. Army Ballistic Research Laboratory.
- A. Singh, I.V. Singh and R. Prakash. 2006. Meshless analysis of unsteady- state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity, Int. Comm. in Heat and Mass Transfer, 33, 231-239. https://doi.org/10.1016/j.icheatmasstransfer.2005.10.008.
- J. Yu, Y. Yang and A. Campo. 2010. Approximate solution of the nonlinear heat conduction equation in a semi-infinite domain, Mathematical Problems in Engg., https://doi.org/10.1155/2010/421657.
- P.L. Chambré. 2004. Nonlinear heat transfer problem, J. App. Physics, 30(11). https://doi.org/10.1063/1.1735036.
- N.A. Badran and M.B. Abd-el-Malek. 1995. Group analysis of nonlinear heat-conduction problem for a semi-infinite body, Nonlinear Mathematical Physics, 2(3-4), 319-328.
- B.T.F. Chung and L.T. Yeh. 1973. Integral method for nonlinear transient heat transfer in a semi-infinite solid, J. Spacecraft and Rockets, 10(1), 88-89. https://doi.org/10.2514/3.27739.
- A.N. Ceretani, D.A. Tarzia1 and L.T. Villa. 2015. Explicit solutions for a non-classical heat conduction problem for a semi-infinite strip with a non-uniform heat source, Boundary Value Problems. https://doi.org/10.1186/s13661-015-0416-3.
- S.N. Atluri and T. Zhu. 1998. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346.
- S.N. Atluri and T. Zhu. 1998. A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation, Comput. Modeling Eng. Sci., 3(3), 187-196.
- J. Sladek, V. Sladek and C. Zhang. 2004. A meshless local boundary integral equation method for heat conduction analysis in nonhomogeneous solids, J. Chinese Institution of Engg., 27 (4), 517-539. https://doi.org/10.1080/02533839.2004.9670901.
- S.N. Atluri and S. Shen. 2005. The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method, Advances in Computational Mathematics, 23, 73-93. https://doi.org/10.1007/s10444-004-1813-9.
- L.F. Qian and R.C. Batra. 2005. Three-dimensional transient heat conduction in a functionally graded thick plate with a higher-order plate theory and a meshless local Petrov-Galerkin method, Comput. Mech., 35, 214-226. https://doi.org/10.1007/s00466-004-0617-6.
- W.U. Xue-Hong and T. Wen-Quan. 2008. Meshless method based on the local weak-forms for steady-state heat conduction problems, Int. J. Heat and Mass Transfer, 51, 3103-3112. https://doi.org/10.1016/j.ijheatmasstransfer.2007.08.021.
- G.H. Baradaran and M.J. Mahmoodabadi. 2009. Optimal Pareto parametric analysis of two dimensional steady state heat conduction problems by MLPG method, IJE Trans. B: Applications, 22(4), 387-406.
- H.C. Thakur, K.M. Singh and P.K. Sahoo. 2010. MLPG analysis of nonlinear heat conduction in irregular domains, CMES, 68(2), 117-149.
- B. Dai, B. Zan, Q. Liang and L. Wang. 2013. Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Applied Mathematics and Computation, 219, 10044-10052. https://doi.org/10.1016/j.amc.2013.04.024.
- T. Zhang, Y. He, L. Dong, S. Li, A. Alotaibi, and S.N. Atluri. 2014. Meshless local Petrov-Galerkin mixed Collocation method for solving Cauchy inverse problems of steady state heat transfer, CMES, 97(6), 509-533.
- T. Zhu and S.N. Atluri. 1998. A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Computational Mechanics, 21, 211-222. https://doi.org/10.1007/s004660050296.
- P. Lancaster, K. Salkauskas. 1981. Surfaces generated by moving least squares methods, Math. Comput., 37, 141158. https://doi.org/10.1090/S0025-5718-1981-06163671.
- R. Morgan. 2015. Linearization and stability analysis of nonlinear problems, Rose-Hulman Undergraduate Mathematics J., 16(2), 67-91.
- R.W. Lewis and P.M. Roberts. 1987. Finite element simulation of solidification problems, Applied Scientific Research, 44(1), 61-92. https://doi.org/10.1007/BF00412007.
- T.L. Bergman A.S. Lavine, F.P. Incropera and D.P. Dewitt. 2010. Fundamentals of Heat and Mass Transfer, 6th Ed., Wiley Publications.
Abstract Views: 360
PDF Views: 223