The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off

   Subscribe/Renew Journal


This article presents Meshless Local Petrov-Galerkin (MLPG) method to obtain the numerical solution of linear and non-linear heat conduction in a semi-infinite solid object with specific heat flux. Moving least square approximants are used to approximate the unknown function of temperature T(x) with Th(x). These approximants are constructed by using a linear basis, a weight function and a set of non-constant coefficients. Essential boundary condition is imposed by the penalty function method. A predictor-corrector scheme based on direct substitution iteration has been applied to address the non-linearity and two-level  method for temporal discretization. The accuracy of MLPG method is verified by comparing the results for the simplified versions of the present model with the exact solutions. Once the accuracy of MLPG method is established, the method is further extended to investigate the effects of temperature-dependent properties.

Keywords

Transient, Temperature Dependent, Semi-Infinite Solid, Penalty Method, Heat Flux, Meshless Local Petrov-Galerkin.
User
Subscription Login to verify subscription
Notifications
Font Size