Subscribe/Renew Journal
This article presents Meshless Local Petrov-Galerkin (MLPG) method to obtain the numerical solution of linear and non-linear heat conduction in a semi-infinite solid object with specific heat flux. Moving least square approximants are used to approximate the unknown function of temperature T(x) with Th(x). These approximants are constructed by using a linear basis, a weight function and a set of non-constant coefficients. Essential boundary condition is imposed by the penalty function method. A predictor-corrector scheme based on direct substitution iteration has been applied to address the non-linearity and two-level method for temporal discretization. The accuracy of MLPG method is verified by comparing the results for the simplified versions of the present model with the exact solutions. Once the accuracy of MLPG method is established, the method is further extended to investigate the effects of temperature-dependent properties.
Keywords
Transient, Temperature Dependent, Semi-Infinite Solid, Penalty Method, Heat Flux, Meshless Local Petrov-Galerkin.
User
Subscription
Login to verify subscription
Font Size
Information