Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Study of the Correlation between Echocardiography and Lipid-Based Genetic Markers among Children with Severe Acute Malnutrition


Affiliations
1 Department of Pediatrics, Shyam Shah Medical College, Rewa (M.P), India
2 Scientist-II, Multidisciplinary Research Unit, Shyam Shah Medical College, Rewa (M.P), India
     

   Subscribe/Renew Journal


Background and Aims

Children with Severe Acute Malnutrition (SAM), especially those with edema, are believed to be at high risk for cardiovascular morbidity and sodium overload, both of which could lead to early death during treatment. This study evaluated the correlation between echocardiography and lipid molecular markers in children with SAM.

Materials and Methods

Lipid profiling & Echo test; M mode and 2D echocardiography were performed using Philips HD7XE Echo Machine. A molecular marker of cardiac risk i.e., LPLSer447Ter, LIPC-250G/A, ApoA1G-75A, ApoBC7673T and ApoCIII3238C>G genetic variation identification was done by using PCR-RFLP method. MUAC- WHO guidelines were used to identify SAM cases. LDL, HDL, VLDL, Triglycerides, and Total Cholesterol profiles were analyzed by using an automated biochemistry analyzer, while PCR-RFLP was used to identify variation in the ApoAI, ApoB, and ApoCIII genes.

Results

The mean values of IVSs, IVSd, LVPWs, LVPWd, LVM, LVMI, LVIDs, EF, FS, and SV between cases and controls were significantly different (p <0.001). We found no significant differences in genotypic and allelic frequencies among SAM cases and controls for the LPLSer447Ter, LIPC-250G/A, ApoA1G-75A, ApoBC7673T, and ApoCIII3238C>G polymorphisms. We found no correlation between IVSs, IVSd, LVPWs, LVPWd, LVM, LVMl, LVID, LVIDd, EF, FS, SV echo parameters and TC, TG, HDL, LDL, VLDL, Non-HDL lipid parameters in SAM cases. SAM children had significantly reduced structural (thickness of IVS, LVPW, and LVM) and functional echo parameters (EF, FS, and SV) in comparison to normal children.

Conclusion

Early evaluation of cardiac function in a malnourished child will significantly affect the management of severe acute mal-nutrition to prevent deaths from cardiac abnormalities. Genotype and allele frequencies of LPLSer447Ter, LIPC-250G/A, ApoA1G-75A, ApoBC7673T, and ApoCIII3238C>G polymorphisms were similar between SAM cases and controls. There was no significant difference in the lipid profile between the mutant SAM case and the non-mutant SAM case.


Keywords

LPL, LIPC, Echo, SAM, Malnutrition, MUAC.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Forchielli ML, mccoll R, Walker WA, Lo C. Children with congenital heart disease: a nutrition challenge. Nutr Rev. 1994 Oct;52(10):348-53. Doi: 10.1111/j.1753-4887. 1994. tb01359. x.
  • Freeman LM, Roubenoff R. The nutrition implications of cardiac cachexia. Nutr Rev. 1994 Oct;52(10):340-7. Doi: 10.1111/j.1753-4887. 1994.tb01358. x.
  • Vaidyanathan B, Nair SB, Sundaram KR, Babu UK, Shivaprakasha K, Rao SG, Kumar RK. Malnutrition in children with congenital heart disease (CHD) determinants and short-term impact of corrective intervention. Indian Pediatr. 2008 Jul;45(7):541-6.
  • Vaidyanathan B, Radhakrishnan R, Sarala DA, Sundaram KR, Kumar RK. What determines nutritional recovery in malnourished children after the correction of congenital heart defects? Pediatrics. 2009 Aug;124(2):e294-9. Doi: 10.1542/peds.2009-0141. Epub 2009 Jul 5.
  • Mehrizi A, Drash A. Growth disturbance in congenital heart disease. J Pediatr. 1962 Sep;61:418-29. Doi: 10.1016/s0022-3476(62)80373-4.
  • Varan B, Tokel K, Yilmaz G. Malnutrition and growth failure in cyanotic and cyanotic congenital heart disease with and without pulmonary hypertension. Arch Dis Child. 1999 Jul;81(1):49-52. Doi: 10.1136/adc.81.1.49.
  • CAMPBELL M, REYNOLDS G. The physical and mental development of children with congenital heart disease. Arch Dis Child. 1949 Dec;24(120):294-302. Doi: 10.1136/adc.24.120.294.
  • Bayer LM, Robinson SJ. Growth history of children with congenital heart defects. Size according to sex, age decade, surgical status, and diagnostic category. Am J Dis Child. 1969 May;117(5):564-72. Doi: 10.1001/archpedi.1969.02100030566011
  • Menon G, Poskitt EM. Why does congenital heart disease cause failure to thrive? Arch Dis Child. 1985 Dec;60(12):1134-9. Doi: 10.1136/adc.60.12.1134.
  • Yahav J, Avigad S, Frand M, Shem-Tov A, Barzilay Z, Linn S, Jonas A. Assessment of intestinal and cardiorespiratory function in children with congenital heart disease on high-caloric formulas. J Pediatr Gastroenterol Nutr. 1985 Oct;4(5):778-85. Doi: 10.1097/00005176-198510000-00017.
  • Filippatos GS, Anker SD, Kremastinos DT. Pathophysiology of peripheral muscle wasting in cardiac cachexia. Curr Opin Clin Nutr Metab Care. 2005 May;8(3):249-54. Doi: 10.1097/01.mco.0000165002.08955.5b.
  • Weintraub RG, Menahem S. Early surgical closure of a large ventricular septal defect: influence on long-term growth. J Am Coll Cardiol. 1991 Aug;18(2):552-8. Doi: 10.1016/0735-1097(91)90614-f.
  • Upton GV. Lipids, cardiovascular disease, and oral contraceptives: a practical perspective. Fertil Steril. 1990 Jan;53(1):1-12. Doi: 10.1016/s0015-0282(16)53208-7.
  • Sankaranarayanan K, Chakraborty R, Boerwinkle EA. Ionizing radiation and genetic risks. VI. Chronic multifactorial diseases: a review of epidemiological and genetical aspects of coronary heart disease, essential hypertension and diabetes mellitus. Mutat Res. 1999 Jan;436(1):21-57. Doi: 10.1016/s1383-5742(98)00017-9.
  • Chatterjee C, Sparks DL. Hepatic lipase, high density lipoproteins, and hypertriglyceridemia. Am J Pathol. 2011 Apr;178(4):1429-33. Doi: 10.1016/j.ajpath.2010.12.050. Epub 2011 Feb 26. PMID: 21406176;
  • Connelly PW, Hegele RA. Hepatic lipase deficiency. Crit Rev Clin Lab Sci. 1998 Dec;35(6):547-72. Doi: 10.1080/10408369891234273
  • Perret B, Mabile L, Martinez L, Tercé F, Barbaras R, Collet X. Hepatic lipase: structure/function relationship, synthesis, and regulation. J Lipid Res. 2002 Aug;43(8):1163-9.
  • Mohan V, Deepa R, Velmurugan K, Gokulakrishnan K. Association of small dense LDL with coronary artery disease and diabetes in urban Asian Indians - the Chennai Urban Rural Epidemiology Study (CURES-8). J Assoc Physicians India. 2005 Feb;53:95-100.
  • Nofer JR, Kehrel B, Fobker M, Levkau B, Assmann G, von Eckardstein A. HDL and arteriosclerosis: beyond reverse cholesterol transport. Atherosclerosis. 2002 Mar;161(1):1-16. Doi: 10.1016/s0021-9150(01)00651-7.
  • Guerci B, Drouin P, Grangé V, Bougnères P, Fontaine P, Kerlan V, Passa P, Thivolet Ch, Vialettes B, Charbonnel B; ASIA Group. Self-monitoring of blood glucose significantly improves metabolic control in patients with type 2 diabetes mellitus: the Auto-Surveillance Intervention Active (ASIA) study. Diabetes Metab. 2003 Dec;29(6):587-94. Doi: 10.1016/s1262-3636(07)70073-3.
  • Navab M, Ananthramaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman AM. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J Lipid Res. 2004 Jun;45(6):993-1007. Doi: 10.1194/jlr.R400001-JLR200. Epub 2004 Apr 1.
  • Belcher JD, Marker PH, Geiger P, Girotti AW, Steinberg MH, Hebbel RP, Vercellotti GM. Low-density lipoprotein susceptibility to oxidation and cytotoxicity to endothelium in sicle cell anemia. J Lab Clin Med. 1999 Jun;133(6):605-12. Doi: 10.1016/s0022-2143(99)90191-9.
  • Hata A, Robertson M, Emi M, Lalouel JM. Direct detection and automated sequencing of individual alleles after electrophoretic strand separation: identification of a common nonsense mutation in exon 9 of the human lipoprotein lipase gene. Nucleic Acids Res. 1990 Sep 25;18(18):5407-11. Doi: 10.1093/nar/18.18.5407.
  • Alinaghian N, Abdollahi E, Torab M, Khodaparast M, Zamani F, Rahimi-Moghaddam P. Gender-related relation between metabolic syndrome and S447X and hindiii polymorphisms of lipoprotein lipase gene in northern Iran. Gene. 2019 Jul 20;706:13-18. Doi: 10.1016/j.gene.2019.04.069. Epub 2019 Apr 26. Erratum in: Gene. 2020 Jan 30;725:144152.
  • Bertolini S, Pisciotta L, Di Scala L, Langheim S, Bellocchio A, Masturzo P, Cantafora A, Martini S, Averna M, Pes G, Stefanutti C, Calandra S. Genetic polymorphisms affecting the phenotypic expression of familial hypercholesterolemia. Atherosclerosis. 2004 May;174(1):57-65. Doi: 10.1016/j.athero-sclerosis.2003.12.037
  • Zambon A, Deeb SS, Hokanson JE, Brown BG, Brunzell JD. Common variants in the promoter of the hepatic lipase gene are associated with lower levels of hepatic lipase activity, buoyant LDL, and higher HDL2 cholesterol. Arterioscler Thromb Vasc Biol. 1998 Nov;18(11):1723-9. Doi: 10.1161/01.atv.18.11.1723.
  • Tahvanainen E, Syvanne M, Frick MH, Murtomaki-Repo S, Antikainen M, Kesaniemi YA, Kauma H, Pasternak A, Taskinen MR, Ehnholm C. Association of variation in hepatic lipase activity with promoter variation in the hepatic lipase gene. The LOCAT Study Invsestigators. J Clin Invest. 1998 Mar 1;101(5):956-60. Doi: 10.1172/JCI1144.
  • Pagani F, Sidoli A, Giudici GA, Barenghi L, Vergani C, Baralle FE. Human apolipoprotein A-I gene promoter polymorphism: association with hyperalphalipoproteinemia. J Lipid Res. 1990 Aug;31(8):1371-7.
  • Harnish DC, Malik S, Kilbourne E, Costa R, Karathanasis SK. Control of apolipoprotein AI gene expression through synergistic interactions between hepatocyte nuclear factors 3 and 4. J Biol Chem. 1996 Jun 7;271(23):13621-8. Doi: 10.1074/jbc.271.23.13621.
  • Young SG. Recent progress in understanding apolipoprotein B. Circulation. 1990 Nov;82(5):1574-94. Doi: 10.1161/01.cir.82.5.1574.
  • Whitfield AJ, Barrett PH, van Bockxmeer FM, Burnett JR. Lipid disorders and mutations in the APOB gene. Clin Chem. 2004 Oct;50(10):1725-32. Doi: 10.1373/clinchem.2004.038026.
  • Humphries SE. DNA polymorphisms of the apolipoprotein genes--their use in the investigation of the genetic component of hyperlipidaemia and atherosclerosis. Atherosclerosis. 1988 Aug;72(2-3):89-108. Doi: 10.1016/0021-9150(88)90069-x.
  • Bentzen J, Jørgensen T, Fenger M. The effect of six polymorphisms in the Apolipoprotein B gene on parameters of lipid metabolism in a Danish population. Clin Genet. 2002 Feb;61(2):126-34. Doi: 10.1034/j.1399-0004.2002.610207.x.
  • Wang CS, mcconathy WJ, Kloer HU, Alaupovic P. Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. J Clin Invest. 1985 Feb;75(2):384-90. Doi: 10.1172/JCI111711.
  • Al-Jafari AA, Daoud MS, Mobeirek AF, Al Anazi MS. DNA polymorphisms of the lipoprotein lipase gene and their association with coronary artery disease in the Saudi population. Int J Mol Sci. 2012;13(6):7559-7574. Doi: 10.3390/ijms13067559.
  • Verma P, Verma DK, Sethi R, Singh S, Krishna A. The rs2070895 (-250G/A) Single Nucleotide Polymorphism in Hepatic Lipase (HL) Gene and the Risk of Coronary Artery Disease in North Indian Population: A Case-Control Study. J Clin Diagn Res. 2016 Aug;10(8):GC01-6. Doi: 10.7860/JCDR/2016/20496.8378. Epub 2016 Aug 1.
  • Bora K, Pathak MS, Borah P, Hussain MI, Das D. Single nucleotide polymorphisms of APOA1 gene and their relationship with serum apolipoprotein A-I concentrations in the native population of Assam. Meta Gene. 2015 Nov 6;7:20-7. Doi: 10.1016/j.mgene.2015.10.005.
  • Hassan NE, El-Masry SA, Zarouk WA, Abd Elneam AI, Abdel Rasheed E, Mahmoud MM. Apolipoprotein B polymorphism distribution among a sample of obese Egyptian females with visceral obesity and its influence on lipid profile. J Genet Eng Biotechnol. 2015 Dec;13(2):177-183. Doi: 10.1016/j.jgeb.2015.09.005. Epub 2015 Oct 9.
  • Ruixing Y, Yiyang L, Meng L, Kela L, Xingjiang L, Lin Z, Wanying L, Jinzhen W, Dezhai Y, Weixiong L. Interactions of the apolipoprotein C-III 3238C>G polymorphism and alcohol consumption on serum triglyceride levels. Lipids Health Dis. 2010 Aug 17;9:86. Doi: 10.1186/1476-511X-9-86.
  • Brent B, Obonyo N, Akech S, Shebbe M, Mpoya A, Mturi N, Berkley JA, Tulloh RMR, Maitland K. Assessment of Myocardial Function in Kenyan Children With Severe, Acute Malnutrition: The Cardiac Physiology in Malnutrition (CAPMAL) Study. JAMA Netw Open. 2019 Mar 1;2(3):e191054. Doi: 10.1001/jamanetworkopen.2019.1054.
  • Jain D, Rao SK, Kumar D, Kumar A, Sihag BK. Cardiac changes in children hospitalized with severe acute malnutrition: A prospective study at tertiary care center of northern India. Indian Heart J. 2019 Nov-Dec;71(6):492-495. Doi: 10.1016/j.ihj.2020.01.005. Epub 2020 Feb 4.
  • Sharma AK et al. What affect heart in SAM: structure or function Int J Contemp Pediatr. 2017 Sep;4(5):1614-1619
  • El-Sayed HL, Nassar MF, Habib NM, Elmasry OA, Gomaa SM. Structural and functional affection of the heart in protein energy malnutrition patients on admission and after nutritional recovery. Eur J Clin Nutr. 2006 Apr;60(4):502-10. Doi: 10.1038/sj.ejcn.1602344.
  • Akdeniz O, Yılmaz E, Çelik M, Özgün N. Cardiac evaluation in children with malnutrition. Turk Pediatri Ars. 2019 Sep 25;54(3):157-165. Doi: 10.14744/turkpediatriars.2019.43815
  • Kozaki K, Gotoda T, Kawamura M, Shimano H, Yazaki Y, Ouchi Y, Orimo H, Yamada N. Mutational analysis of human lipoprotein lipase by carboxy-terminal truncation. J Lipid Res. 1993 Oct;34(10):1765-72.
  • Ou L, Yao L, Guo Y, Fan S. Association of the G-250A promoter polymorphism in the hepatic lipase gene with the risk of type 2 diabetes mellitus. Ann Endocrinol (Paris). 2013 Feb;74(1):45-8. Doi: 10.1016/j.ando.2012.11.009.
  • Todorova B, Kubaszek A, Pihlajamäki J, Lindström J, Eriksson J, Valle TT, Hämäläinen H, Ilanne-Parikka P, Keinänen-Kiukaanniemi S, Tuomilehto J, Uusitupa M, Laakso M; Finnish Diabetes Prevention Study. The G-250A promoter polymorphism of the hepatic lipase gene predicts the conversion from impaired glucose tolerance to type 2 diabetes mellitus: the Finnish Diabetes Prevention Study. J Clin Endocrinol Metab. 2004 May;89(5):2019-23. Doi: 10.1210/jc.2003-031325.
  • Eller P, Schgoer W, Mueller T, Tancevski I, Wehinger A, Ulmer H, Foeger B, Haltmayer M, Ritsch A, Patsch JR. Hepatic lipase polymorphism and increased risk of peripheral arterial disease. J Intern Med. 2005 Oct;258(4):344-8. Doi: 10.1111/j.1365-2796.2005.01549.x.
  • Heng CK, Low PS, Saha N. Variations in the promoter region of the apolipoprotein A-1 gene influence plasma lipoprotein(a) levels in Asian Indian neonates from Singapore. Pediatr Res. 2001 Apr;49(4):514-8. Doi: 10.1203/00006450-200104000-00013.
  • De França E, Alves JG, Hutz MH. APOA1/C3/A4 gene cluster variability and lipid levels in Brazilian children. Braz J Med Biol Res. 2005 Apr;38(4):535-41. Doi: 10.1590/s0100-879x2005000400006. Epub 2005 Apr 13
  • Jia L, Bai H, Fu M, Xu Y, Yang Y, Long S. Relationship between plasma HDL subclasses distribution and apoa-I gene polymorphisms. Clin Chim Acta. 2005 Oct;360(1-2):37-45. Doi: 10.1016/j.cccn.2005.04.004.
  • Padmaja N, Kumar MR, Adithan C. Association of polymorphisms in apolipoprotein A1 and apolipoprotein B genes with lipid profile in Tamilian population. Indian Heart J. 2009 Jan-Feb;61(1):51-4.
  • Chen ES, Mazzotti DR, Furuya TK, Cendoroglo MS, Ramos LR, Araujo LQ, Burbano RR, de Arruda Cardoso Smith M. Apolipoprotein A1 gene polymorphisms as risk factors for hypertension and obesity. Clin Exp Med. 2009 Dec;9(4):319-25. Doi: 10.1007/s10238-009-0051-3.
  • Yin JM, Liu Z, Zhao SC, Guo YJ, Liu ZT. Relationship between the Apolipoprotein AI, B gene polymorphism and the risk of non-traumatic osteonecrosis. Lipids Health Dis. 2014 Sep 23;13:149. Doi: 10.1186/1476-511X-13-149.
  • Chien KL, Fang WH, Wen HC, Lin HP, Lin YL, Lin SW, Wu JH, Kao JT. APOA1/C3/A5 haplotype and risk of hypertriglyceridemia in Taiwanese. Clin Chim Acta. 2008 Apr;390(1-2):56-62. Doi: 10.1016/j.cca.2007.12.014. Epub 2007 Dec 27.
  • Ko YL, Ko YS, Wu SM, Teng MS, Chen FR, Hsu TS, Chiang CW, Lee YS. Interaction between obesity and genetic polymorphisms in the apolipoprotein CIII gene and lipoprotein lipase gene on the risk of hypertriglyceridemia in Chinese. Hum Genet. 1997 Sep;100(3-4):327-33. Doi: 10.1007/ s004390050511.
  • Bai H, Saku K, Liu R, Imamura M, Arakawa K. Association between coronary heart disease and the apolipoprotein A-I/C-III/A-IV complex in a Japanese population. Hum Genet. 1995 Jan;95(1):102-4. Doi: 10.1007/BF00225084
  • Chhabra S, Narang R, Krishnan LR, Vasisht S, Agarwal DP, Srivastava LM, Manchanda SC, Das N. Apolipoprotein C3 ssti polymorphism and triglyceride levels in Asian Indians. BMC Genet. 2002 Jun 6;3:9. Doi: 10.1186/1471-2156-3-9.
  • Russo GT, Meigs JB, Cupples LA, Demissie S, Otvos JD, Wilson PW, Lahoz C, Cucinotta D, Couture P, Mallory T, Schaefer EJ, Ordovas JM. Association of the Sst-I polymorphism at the APOC3 gene locus with variations in lipid levels, lipoprotein subclass profiles and coronary heart disease risk: the Framingham offspring study. Atherosclerosis. 2001 Sep;158(1):173-81. Doi: 10.1016/s0021-9150(01)00409-9.
  • Baroni MG, Berni A, Romeo S, Arca M, Tesorio T, Sorropago G, Di Mario U, Galton DJ. Genetic study of common variants at the Apo E, Apo AI, Apo CIII, Apo B, lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): variation in LIPC gene associates with clinical outcomes in patients with established CAD. BMC Med Genet. 2003 Sep 10;4:8. Doi: 10.1186/1471-2350-4-8.
  • Tai ES, Corella D, Deurenberg-Yap M, Cutter J, Chew SK, Tan CE, Ordovas JM; Singapore National Health Survey. Dietary fat interacts with the -514C>T polymorphism in the hepatic lipase gene promoter on plasma lipid profiles in a multiethnic Asian population: the 1998 Singapore National Health Survey. J Nutr. 2003 Nov;133(11):3399-408. Doi: 10.1093/jn/133.11.3399.
  • Almeida KA, Strunz CM, Maranhão RC, Mansur AP. The S447X polymorphism of lipoprotein lipase: effect on the incidence of premature coronary disease and on plasma lipids. Arq Bras Cardiol. 2007 Mar;88(3):297-303. English, Portuguese. Doi: 10.1590/s0066-782x2007000300008.
  • Guerra R, Wang J, Grundy SM, Cohen JC. A hepatic lipase (LIPC) allele associated with high plasma concentrations of high density lipoprotein cholesterol. Proc Natl Acad Sci USA. 1997 Apr 29;94(9):4532-7. Doi: 10.1073/pnas.94.9.4532.

Abstract Views: 144

PDF Views: 0




  • A Study of the Correlation between Echocardiography and Lipid-Based Genetic Markers among Children with Severe Acute Malnutrition

Abstract Views: 144  |  PDF Views: 0

Authors

Jitendra Singh
Department of Pediatrics, Shyam Shah Medical College, Rewa (M.P), India
Sanjay Kumar Pandey
Scientist-II, Multidisciplinary Research Unit, Shyam Shah Medical College, Rewa (M.P), India

Abstract


Background and Aims

Children with Severe Acute Malnutrition (SAM), especially those with edema, are believed to be at high risk for cardiovascular morbidity and sodium overload, both of which could lead to early death during treatment. This study evaluated the correlation between echocardiography and lipid molecular markers in children with SAM.

Materials and Methods

Lipid profiling & Echo test; M mode and 2D echocardiography were performed using Philips HD7XE Echo Machine. A molecular marker of cardiac risk i.e., LPLSer447Ter, LIPC-250G/A, ApoA1G-75A, ApoBC7673T and ApoCIII3238C>G genetic variation identification was done by using PCR-RFLP method. MUAC- WHO guidelines were used to identify SAM cases. LDL, HDL, VLDL, Triglycerides, and Total Cholesterol profiles were analyzed by using an automated biochemistry analyzer, while PCR-RFLP was used to identify variation in the ApoAI, ApoB, and ApoCIII genes.

Results

The mean values of IVSs, IVSd, LVPWs, LVPWd, LVM, LVMI, LVIDs, EF, FS, and SV between cases and controls were significantly different (p <0.001). We found no significant differences in genotypic and allelic frequencies among SAM cases and controls for the LPLSer447Ter, LIPC-250G/A, ApoA1G-75A, ApoBC7673T, and ApoCIII3238C>G polymorphisms. We found no correlation between IVSs, IVSd, LVPWs, LVPWd, LVM, LVMl, LVID, LVIDd, EF, FS, SV echo parameters and TC, TG, HDL, LDL, VLDL, Non-HDL lipid parameters in SAM cases. SAM children had significantly reduced structural (thickness of IVS, LVPW, and LVM) and functional echo parameters (EF, FS, and SV) in comparison to normal children.

Conclusion

Early evaluation of cardiac function in a malnourished child will significantly affect the management of severe acute mal-nutrition to prevent deaths from cardiac abnormalities. Genotype and allele frequencies of LPLSer447Ter, LIPC-250G/A, ApoA1G-75A, ApoBC7673T, and ApoCIII3238C>G polymorphisms were similar between SAM cases and controls. There was no significant difference in the lipid profile between the mutant SAM case and the non-mutant SAM case.


Keywords


LPL, LIPC, Echo, SAM, Malnutrition, MUAC.

References