Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Boron Isotope—A Cryptic Paleo-Seawater pH Proxy


Affiliations
1 RAM Foundation for Natural and Social Sciences, 75/B, Sovabazar Street, Kolkata 700 005, India
     

   Subscribe/Renew Journal


After the discovery of the rare element Boron more than two centuries ago (1808), application of its isotopic ratio (δ11B) has been receiving the momentous consideration since the last few decades along the growing attention to the adversities of the anthropogenic CO2 emission on our hydrosphere. Despite the ongoing research, its empirical function in the field of paleo-seawater pH proxy is still relevant upto a certain upper limit of the Cenozoic. Under such circumstances here an effort has been made to realise the enigmatic relevance of the isotopic ratio of this rare element and its future in brief.
User
Subscription Login to verify subscription
Notifications
Font Size

  • A.G. Dickson, Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K, Deep Sea Research Part A. Oceanographic Research Papers, Pergamon Press, Vol 37, No 5, page 755 – 766, 1990.
  • A.J. Spivack, M.R. Palmer and J.M. Edmond, The sedimentary cycle of the boron isotopes, Geochimica et Cosmochimica Acta, Pergamon Journals Ltd., Vol 51, No 7, page 1939 – 1949, 1987.
  • A. Sanyal, N.G. Hemming, W.S. Broecker, D.W. Lea, H.J. Spero and G.N. Hanson, Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments, Paleoceanography, AGU, Vol 11, No 5, 513 – 517, 1996.
  • A. Sanyal, J. Bijma, H. Spero and D. W. Lea, Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy, Paleooceanography, AGU, Vol 16, No 5, page 515 – 519, 2001.
  • D.L. Royer, S.L. Wing, D.J. Beerling, D.W. Jolley, P.L. Koch, L.J. Hickey and R.A. Berner, Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary, Science, AAAS, Vol 292, No 5525, page 2310 – 2313, 2001.
  • E.L. Howes, K. Kaczmarek, M. Raitzsch, A. Mewes, N. Bijma, I. Horn, S. Misra, J.P. Gattuso and J. Bijma, Decoupled carbonate chemistry controls on the incorporation of boron into Orbulina universa, Biogeosciences, EGU, Vol 14, No 2, page 415-430, 2017.
  • E.M. Griffith, A. Paytan, R. Kozdon, A. Eisenhauer and A.C. Ravelo, Influences on the fractionation of calcium isotopes in planktonic foraminifera, Earth and Planetary Science Letters, Elsevier, Vol 268, No 1 – 2, page 124 –136, 2008.
  • G.L. Foster, Seawater pH, pCO2 and [CO32−] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera, Earth and Planetary Science Letters, Elsevier, Vol 271, No 1 – 4, page 254 – 266, 2008.
  • G. Paris, J. Gaillardet and P. Louvat, The geological evolution of boron isotopic composition of seawater recorded in evaporites, Geology, GSA, Vol 38, No 11, page 1035 – 1038, 2010.
  • H. Harder, Boron abundance in natural waters and in the atmosphere. In: K.H. Wedepohl (Ed.), Handbook of Geochemistry, Springer, page 41 – 43, 1970.
  • H.P. Schwarcz, E.K. Agyei and C.C. McMullen, Boron isotopic fractionation during clay adsorption from seawater, Earth and Planetary Science Letters, NorthHolland Publishing Company, Vol 6, No 1, page 1 – 5, 1969.
  • J. Xiao, Z.D. Jin, Y.K. Xiao and M.Y. He, Controlling factors of the δ 11B-pH proxy and its research direction, Environmental Earth Sciences, Springer Link, Vol 71, No 4, page 1641 – 1650, 2014.
  • L.R. Uppström, The boron/chlorinity ratio of deep-sea water from the Pacific Ocean, Deep-Sea Research and Oceanographic Abstracts, Pergamon Press, Vol. 21, No 2, page 161 – 162, 1974.
  • M. Cusack, N.A. Kamenos, C. Rollion-Bard and G. Tricot, Red coralline algae assessed as marine pH proxies using 11B MAS NMR, Scientific Reports, Nature Research, Vol 5, No 8175, page 1 – 3, 2015.
  • M. Pagani, K.H. Freeman and M.A. Arthur, Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses, Science, AAAS, Vol 285, No 5429, page 876 – 879, 1999.
  • M. Pagani, J.C. Zachos, K.H. Freeman, B. Tipple and S. Bohaty, Marked decline in atmospheric carbon dioxide concentrations during the Paleogene, Science, AAAS, Vol 309, No 5734, page 600 – 603, 2005.
  • M. Raitzsch, E.C. Hathorne, H. Kuhnert, J. Groeneveld and T. Bickert, Modern and late Pleistocene B/ Ca ratios of the benthic foraminifer Planulina wuellerstorfi determined with laser ablation ICP-MS, Geology, GSA, Vol 39, No 11, page 1039 – 1042, 2011.
  • N.G. Hemming and B. Hönisch, Chapter Seventeen Boron Isotopes in Marine Carbonate Sediments and the pH of the Ocean, Developments in Marine Geology, Elsevier B.V. , Vol 1, page 717 – 734, 2007.
  • P.N. Pearson and M.R. Palmer, Atmospheric carbon dioxide concentrations over the past 60 million years, Nature, Vol 406, No 6797, page 695–699, 2000.
  • Philip A. E. Pogge von Strandmann, J. Forshaw and D.N. Schmidt, Modern and Cenozoic records of seawater magnesium from foraminiferal Mg isotopes, Biogeosciences, EGU, Vol 11, No 18, page 5155 – 5168, 2014.
  • R. Greenop, M. Hain, M.S. Sodian, K. Oliver, P. Goodwin, T. Chalk, C.H. Lear, P. Wilson and G. Foster, A record of Neogene seawater δ11B reconstructed from paired δ11B analyses on benthic and planktic foraminifera, Climate of the Past, EGU, Vol 13, No 2, page 149 – 170, 2017.
  • S.A. Kasemann, C.J. Hawkesworth, A.R. Prave, A.E. Fallick and P.N. Pearson, Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change, Earth and Planetary Science Letters, Elsevier, Vol 231, No 1 – 2, page 73 – 86, 2005.
  • S. Misra and P.N. Froelich, Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering, Science, AAAS, Vol 335, No 6070, page 818 – 823, 2012.
  • S. Reynaud, N.G. Hemming, A. Juillet-Leclerc and J.P. Gattuso, Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp., Coral Reefs, Springer Link, Vol 23, No 4, page 539 – 546, 2004.
  • Y. Xiao, S. Li, H. Wei, A. Sun, W. Zhou and W.G. Liu, An unusual isotopic fractionation of boron in synthetic calcium carbonate precipitated from seawater and saline water, Science in China Series B: Chemistry, Springer Link, Vol 49, No 5, page 454 – 465, 2006.
  • Z. Guan, J. Lv, P. Bai and X. Guo, Boron removal from aqueous solutions by adsorption — A review, Desalination, Elsevier, Vol 383, page 29 – 37, 2016.

Abstract Views: 484

PDF Views: 3




  • Boron Isotope—A Cryptic Paleo-Seawater pH Proxy

Abstract Views: 484  |  PDF Views: 3

Authors

Ranasish Roy Chowdhury
RAM Foundation for Natural and Social Sciences, 75/B, Sovabazar Street, Kolkata 700 005, India
Reshmi Roy Chowdhury
RAM Foundation for Natural and Social Sciences, 75/B, Sovabazar Street, Kolkata 700 005, India

Abstract


After the discovery of the rare element Boron more than two centuries ago (1808), application of its isotopic ratio (δ11B) has been receiving the momentous consideration since the last few decades along the growing attention to the adversities of the anthropogenic CO2 emission on our hydrosphere. Despite the ongoing research, its empirical function in the field of paleo-seawater pH proxy is still relevant upto a certain upper limit of the Cenozoic. Under such circumstances here an effort has been made to realise the enigmatic relevance of the isotopic ratio of this rare element and its future in brief.

References





DOI: https://doi.org/10.24906/isc%2F2019%2Fv33%2Fi5%2F189126