Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Antifungal Metabolites Produced by Pseudomonas fluorescens against Fusarium oxysporum F.sp. Cepae


Affiliations
1 Horticultural Research Station (T.N.A.U.), Ooty (T.N.), India
     

   Subscribe/Renew Journal


Antifungal metabolites were isolated from Pseudomonas fluorescens and tested against Fusarium oxysporum f.sp. cepae causing basal rot of onion. Phenazine and 2,4 DAPG produced by the Pseudomonas isolate (Pf 12) were recorded 67.03 and 77.34 per cent inhibition of mycelial growth over control respectively. P. fluorescens isolates were strongly produced hydroxymate and Carboxymate type of siderophore at various level. Antifungal metabolites produced by Pseudomonas isolate (Pf 12) was recorded maximum inhibition of basal rot pathogen in in vitro condition.

Keywords

Antifungal Metabolites, Pseudomonas fluorescens, Fusarium oxysporum F.sp.cepae.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Ahl, P., Voisard, C. and Defago, G. (1986). Iron bound siderophores, cyanic acid and antibiotics involved in suppression of Theilaviopsis basicola by Pseudomonas fluorescens strain. J. Phytopathol., 116 (2) : 121-134.
  • Bakker, P.A.H.M., Glandorf, D.C.M, Viebahn, M., Ouwens, T.W.M. and Smit, E. (2002). Effect of Pseudomonas putida modified to produce phenazine -1- carboxylic acid and 2,4diacetylphloroglucinol on the microflora of field grown wheat. Internat. J. Gen. Mol. Microbiol., 81 : 617-624.
  • Coskuntuna, A. and Ozer, N. (2008). Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment. Crop Protection, 27 : 330-336.
  • Defago, G., Berling, C.H., Burger, U., Hass, D., Kahr, G. , Keel, C., Voisard, C., Wirthner, P. and Wuthrich, B. (1990). Suppression of black ischolar_main rot of tobacco and other ischolar_main diseases by strains of Pseudomonas fluorescens: Potential applications and mechanisms. In: Biological control of soilborne plant pathogens (Eds.) Hornby, D. CAB International, Wellingford, Oxon UK, pp. 93-108.
  • Fakhouri, W., Kang, Z. and Buchenauer, H. (2001). Microscopic studies on the mode of action of fluorescent pseudomonads alone and in combination with acibenzolar-Smethyl effective against Fusarium oxysporum f. sp.lycopersici in tomato plants. Bulletin OILB/SROP, 24: 251254.
  • Kamalakannan, A. (2004). Development of management strategies for the control of Coleus (Coleus forskohlii) Briq. Root rot caused by Macrophomina phaseolina (Tassi.) Goid.and Rhizoctonia solani (Kuhn). Ph.D. (Ag.) Thesis, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore – 3.p. 202.
  • Kavitha, K. (2004). Molecular and biochemical approaches for the selection of biocontrol agents for the management of turmeric rhizome rot. Ph.D., (Ag.) Thesis, Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore-3.India.pp. 65-67.
  • Keel, C., Schnider, U., Maurhefor, M., Voisard, C., Laville, K., Burger, U., Wirthner, P., Hass, D. and Defago, G. (1992).Suppression of ischolar_mainrot diseases by Pseudomonas fluorescens CHAO: Importance of the bacterial secondary metabolite, 2, 4- Diacetyl phloroglucinol. Mol. Plant Microbe Interact., 5 (1) : 4-13.
  • King, E.O., Ward, M.K. and Raney, D.E. (1954). The simple media for the demonstration of pyocyanin and fluorescein. J.Lab. Clin. Med., 44 (2) : 301-307.
  • Kloepper, J.W., Lifshitz, R. and Schroth, M.N. (1988). Pseudomonas inoculants to benefit plant protection. In: ISI Atlas of Science, Institute for Scientific information, Philadelphia, pp. 60-64.
  • Knowels, C.D. (1976). Micro-organisms and cyanide. Bacterial. Rev., 40 (3) : 652-680.
  • Lam, S.K. and Ng, T.B. (2001). First simultaneous isolation of a ribosome inactivating protein and an antifungal protein from a mushroom (Lyophyllum shimeji) together with evidence for synergism of their antifungal effects. Arch. Biochem. Biophysics., 393 (2) : 271-280.
  • Leeman, M., Den Ouden, F.M. , Van Pelt, J.A., Dirkx, F.P.M., Steijl, H., Bakker, P.A.H.M. and Schippers, B. (1996). Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopatho., 86 (2) : 149-155.
  • Lim, H.S., Lee, J.M., Kim, S. and Dal, H.S. (1999). Role of siderophore in biological control of Fusarium solani by Pseudomonas fluorescens GL20. Bulletin of the Institute for Comprehensive Agricultural Sciences, Kinki-University, 7 : 47-58.
  • Linget, C., Stylianou, D.G., Dell, A., Wolff, R.E., Piemont, Y. and Abdallah, M. (1992). Bacterial siderophores: the structure of a desferribactin produced by P. fluorescens ATCC 13525, Tetrahedron Lett., 33: 3851-3854
  • Malathi, S. (2015). Biological control of onion basal rot caused by Fusarium oxysporum f. sp. Cepae. Asian J. Bio. Sci., 10 (1): 21-26.
  • Meena, B., Marimuthu, T., Vidhyasekaran, P. and Velazhahan, R. (2001). Biological control of ischolar_mainrot of groundnut with antagonistic Pseudomonas fluorescens strains. J. Plant Dis. Protect., 108 (4) : 369-381.
  • Miller, R.L. and Higgins, V.J. (1970). Association of cyanide with infection of birds foot trefoil by Stemphylium rot. Phytopathol., 60 (1) : 104-110.
  • Mondal, K.K., Dureja, Prem, Singh, R.P. and Verma, J.P. (1998). Secondary metabolites of P. fluorescens in the suppression of bacterial blight of cotton induced by Xanthomonas axonopodis pv malvacearum. In: Proceedings of 7th International Congress on Plant Pathololgy. Edinburgh, Scotland, Abst No. 5.2.79.
  • Raaijmakers, J.M., Weller, D.M. and Thomashow, L.S. (1997). Frequency of antibiotic producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol., 63 (3) : 881-887.
  • Rangaswami, G. (1993). Diseases of crop plants in India. Prentice Hall of India (Pvt). Ltd., New Delhi. 498p.
  • Reeves, M., Pine, L., Neilands, J.B. and Bullows, A. (1983). Absence of siderophore activity in Legionella sp. grown in iron deficient media. J. Bacteriol., 154 (1) : 324-329
  • Rosales, A.M., Thomashow, L., Cook, R.J. and Mew, T.W. (1995). Isolation and identification of antifungal metabolites produced by rice associated antagonistic Pseudomonas sp. Phytopathol., 85 (9) : 1028-1032.
  • Sadasivam, S. and Manickam, A. (1992).Biochemical methods for agricultural sciences. Wiley Eastern Ltd., New Delhi, p. 246.
  • Slininger, P. and Shea-Wilbur, M.A. (1995). Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotechnol., 43 (5) : 794-800.
  • Snow, G.A. (1984). Mycobactin. A growth factor for Macrophomina joheni II degradation and identification of fragments. J. Chem. Soc., 25: 2588-2596.
  • Thomashow, L.S, Bonsall, R.F. and Weller, D.M. (1997). Antibiotic production by soil and rhizosphere microbes in situ. In: Manual of Environmental Microbiology. (Eds.) Hurst C.J, Knudsen G.R, McInerney M.J, Stetzenbach L.D and Walter M.V. ASM Press, Washington, DC. pp 493–499.
  • Thomashow, L.S. and Weller, D.M. (1996). Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Plant-Microbe Interactions, Vol. 1. (Eds.) Stacey, G. and Keen, N., pp. 187235. Chapman & Hall, New York, USA.
  • Vogel, A.E. (1987). Class reactions (reactions for functional groups) In: Elementary Practical Organic Chemistry. CBS publisher, New Delhi pp 190-194.
  • Voisard, C., Keel, C., Haas, D. and Defago, G. (1989). Cyanide production by Pseudomonas fluorescens helps suppress black ischolar_main rot of tobacco under gnotobiotic conditions. EMBO J., 8: 351-358.

Abstract Views: 367

PDF Views: 0




  • Antifungal Metabolites Produced by Pseudomonas fluorescens against Fusarium oxysporum F.sp. Cepae

Abstract Views: 367  |  PDF Views: 0

Authors

S. Malathi
Horticultural Research Station (T.N.A.U.), Ooty (T.N.), India

Abstract


Antifungal metabolites were isolated from Pseudomonas fluorescens and tested against Fusarium oxysporum f.sp. cepae causing basal rot of onion. Phenazine and 2,4 DAPG produced by the Pseudomonas isolate (Pf 12) were recorded 67.03 and 77.34 per cent inhibition of mycelial growth over control respectively. P. fluorescens isolates were strongly produced hydroxymate and Carboxymate type of siderophore at various level. Antifungal metabolites produced by Pseudomonas isolate (Pf 12) was recorded maximum inhibition of basal rot pathogen in in vitro condition.

Keywords


Antifungal Metabolites, Pseudomonas fluorescens, Fusarium oxysporum F.sp.cepae.

References