Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Positive Impact of Abiotic Stress on Medicinal and Aromatic Plants


Affiliations
1 Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India
2 Department of Plant Physiology, Agricultural Biochemistry, Medicinal and Aromatic Plants, Indira Gandhi Krishi Viswavidyalaya, Raipur (C.G.), India
     

   Subscribe/Renew Journal


Abiotic stress is the imbalance in the environmental status that affects the normal growth, development and reproduction of an organism. Various abiotic stresses are drought, salinity, heat, flood, reactive oxygen species etc. Generally stress cause reduction in quality and quantity of yield in agricultural crops. But in case of medicinal and aromatic plant it has been found to enhance both qualitative and quantitative yield. In this article we are going to understand the mechanism that will change our view towards abiotic stresses.

Keywords

Abiotic Stress, Medicinal Plants, Quality Yield, Advantage of Stress.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Abbaszadeh, B., Aliabadi, F.H. and Morteza, E. (2009). Effects of irrigation levels on essential oil of balm (Melissa officinalis L.) American-Eurasian J. Sustain. Agric., 3 : 53-56. 1996; 45:133-6. S0734-9750(02)00007-1.
  • Abel, A.J., Sutherland, M.W. and Guest, D.I. (2003). Production of reactive oxygen species during nonspecific elicitation, non-host resistance and field resistance expression in cultures of tobacco cells. Func. Plant Biol., 30 : 91-99.
  • Albright, L.D., Both, A.J. and Chiu, A.J. (2000). Controlling greenhouse light to a consistent daily integral. Trans. ASAE, 43 : 421-431.
  • Ali, M.B., Hahn, E.J. and Paek, K.Y. (2005). Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in phalaenopsis. Plant Physiol. Biochem., 43 : 213-223.
  • Ali, R.M. and Abbas, H.M. (2003). Response of salt stressed barley seedlings to phenylurea. Plant Soil Environ., 49 : 158-162.
  • Anasari, P. and Asghari, G. (2008). Effects of light and differentiation on gingerol and zingiberene production in callus culture of Zingiber Officinale Rosc. Res Pharm Sci., 3 : 59-63.
  • Baher, Z.F., Mirza, M., Ghorbanil, M. and Rezaii, M.Z. (2002). The influence of water stress on plant height, herbal and essential oil yield and composition in Satureja hortensis L. Flavour & Fragrance J., 17 : 275-277.
  • Brachet, J. and Cosson, L. (1986). Changes in the total alkaloid content of Datura innoxia Mill. subjected to salt stress. J. Exp. Bot., 37: 650-656.
  • Cao, H.X., Sun, C.X., Shao, H.B. and Lei, X.T. (2011). Effects of low temperature and drought on the physiological and growth changes in oil palm seedlings. African J. Biotech., 10 : 2630-2637.
  • Carpita, N.C. and Gibeaut, D.M. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J., 3 : 1-30.
  • Cassi-Lit, M.T. (2005). Effects of crude and partially purified extracts from UV-Birradiated rice leaves on Helicoverpa armigera (Hubner). Photochem. Photobiol., 81 : 1101-1106.
  • Cavalcanti, B.C., Costa-Lotufo, L.V., Moraes, M.O., Burbano, R.R., Silveira, E.R., Cunha, K.M., Rao, V.S., Moura, D.J., Rosa, R.M., Henriques, J.A. and Pessoa, C. (2006). Genotoxicity evaluation of kaurenoic acid, a bioactive diterpenoid present in Copaiba oil. Food Chem. Toxicol., 44 : 388-392.
  • Chalker-Scott, L. and Fnchigami, L.H. (1989). The role of phenolic compounds in plant stress responses. In: Paul HL, Ed. Low temperature stress physiology in crops. Boca Raton, Florida: CRC Press Inc.:40.
  • Chattopadhyay, A. and Subramanyam, K. (1993). Changes in oil yield of C. wintrianus suffering from iron chlorosis. J. Ind. Soc. Soil., 41 : 166-167.
  • Chung, I., Park, M.R., Rehman, S. and Yun, S.J. (2001). Tissue specific and inducible expression of resveratrol synthase gene in peanut plants. Mol. Cells, 12 : 353-359.
  • Dixon, R.A. and Paiva, N. (1995). Stressed induced phenyl propanoid metabolism. Plant Cell, 7 : 1085-1097; PMID:12242399; DOI: 10.1105/tpc.7.7.1085.
  • Gao, W., Zheng, Y., Slusser, J.R., Heisler, G.M., Grant, R.H., Xu, J. and He, D. (2004). Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: A field experiment. Photochem. Photobiol., 80:127-131.
  • Gosset, D.R., Millhollon, E.P. and Lucas, M.C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt sensitive cultivars of cotton. Crop Sci., 34 : 706-714.
  • Havkin-Frenkel, D., Podstolski, A. and Knorr, D. (1996). Effect of light on vanillin precursors formation by in vitro cultures of Vanilla planifolia. Plant Cell Tissue Organ Cult., 45 : 13313-6.
  • Jochum, Gera M., Mudge, Kenneth,W. and Thomas, Richard B. (2007). Elevated temperatures increase leaf senescence and Root secondary metabolite concentrations in the understory herb Panax quinquefolius (araliaceae). Am. J. Bot., 94 : 819-826; PMID:21636451.
  • Johnson, C.B., Kirby, J., Naxakis, G. and Pearson, S. (1999). Substantial UV-B-mediated induction of essential oils in sweet basil (Ocimum basilicum L.). Photochem., 51 : 507-510.
  • Khalighi, A., Abad, J. and Khara, J. (2007). Effect of cadmium toxicity on the level of lipid peroxidation and antioxidative enzyme activity in wheat plants colonized by arbuscular mycorrhizal fungi. Pakistan J. Biol. Sci., 10 : 2413-2417.
  • Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C. and Abdelly, C. (2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem., 45 : 244-249.
  • Lee, C.K., Lu, C.K., Kuo, Y.H., Chen, J.Z. and Sun, G.Z. (2004). New prenylated Xavones from the ischolar_mains of Ficus beecheyana. J. Chin. Chem. Soc., 51: 437-442.
  • Li, T.S.C., Mazza, G., Cottrell, A.C. and Gao, L. (1996). Ginsenosides in ischolar_mains and leaves of American ginseng. J. Agric. Food. Chem., 44 : 717-720.
  • Mahajan, S. (2007). Calcium signaling network in plants: an overview. Plant Signal Behav., 2 : 79-85; PMID:19516972.
  • Mittler, R., Vanderauwera, S., Gallery, M. and van Breusegem, F. (2004). Reactive oxygen gene network of plants. Trends Plant Sci., 9 : 490-498.
  • Rao, S.R. and Ravishankar, G.A.(1989). Plant cell cultures: chemical factories of secondary metabolites. Biotechnol. Adv., 2002; 20 : 101-53; PMID:14538059; DOI:10.1016/ Raton, Florida: CRC Press Inc. 1989:40.
  • Rengel, Z. (1992). Role of calcium in aluminium toxicity. New Phytol., 121 : 499-513.
  • Rosemann, D., Heller, W. and Sandermann, H. (1991). Biochemical plant reponses to ozone. II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol., 97 : 1280-1286; PMID:16668544.
  • Sangwan, N.S., Farooqi, A.H.A. and Sangwan, R.S. (1994). Effect of drought stress on growth and essential oil metabolism in lemongrass. New Plant Physiologists, 128 : 173-179.
  • Sangwan, R.S., Farooqi, A.H.A., Bansal, R.D. and Sangwan, N.S. (1993). Interspecific variation in physiological and metabolic responses of five species of Cymbopogon to water stress. J. Plant Physiol., 142 : 618-622.
  • Sharma, P. and Dubey, R.S. (2005). Lead toxicity in plants. Braz. J. Plant Physiol., 17 : 35-52.
  • Simon, J.E., Reiss- Buben heim, D., Joly, R.J. and Charles, D.J. (1992). Water stress induced alteration in essential oil content and composition of sweet basil. J. Essential Oil Res., 4 : 71-75.
  • Suzuki, N. and Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol. Plant, 126 : 45-51.
  • Szabo, B., Tyihak, E., Szabo, L.G. and Botz, L. (2003). Mycotoxin and drought stress induced change of alkaloid content of Papaver somniferum plantlets. Acta Bot. Hung., 45 : 409-417.
  • Thomas, R.O. (1948). Photoperiodic responses of maize. Iowa St Col. J. Sci., 23 : 86-88.
  • Tuteja, N. (2007). Mechanisms of high salinity tolerance in plants. Methods Enzymol, 428 : 419-438.
  • Tuteja, N. and Mahajan , S. (2007). Further characterization of calcineurin B-like protein and its interacting partner CBL-interacting protein kinase from Pisum sativum. Plant Signal Behav., 2 : 358-361.
  • Wang, D.H., Du, F., Liu, H.Y. and Liang, Z.S. (2010). Drought stress increases iridoid glycosides biosynthesis in the ischolar_mains of Scrophularia ningpoensis seedlings. J. Med. Plants Res., 4 : 2691-2699.
  • Xu, Z., Zhou, G. and Shimizu, H. (2010). Plant responses to drought and rewatering. Plant Signal Behav., 5 : 649-654; PMID:20404516; DOI: 10.4161/psb.5.6.11398.
  • Zhang, W., Seki, M. and Furusaki, S. (1997). Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci., 127:207-214.
  • Zheng, Z., Sheth, U., Nadiga, M., Pinkham, J.L. and Shetty, K. (2001) A model for the role of the proline linked pentose phosphate pathway in polymeric dye tolerance in oregano. Proc. Biochem., 36 : 941-946.
  • Zhu, J.K. (2003). Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 6 : 441-445.

Abstract Views: 275

PDF Views: 0




  • Positive Impact of Abiotic Stress on Medicinal and Aromatic Plants

Abstract Views: 275  |  PDF Views: 0

Authors

J. Pradhan
Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India
S. K. Sahoo
Department of Plant Physiology, Agricultural Biochemistry, Medicinal and Aromatic Plants, Indira Gandhi Krishi Viswavidyalaya, Raipur (C.G.), India
S. Lalotra
Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India
R. S. Sarma
Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India

Abstract


Abiotic stress is the imbalance in the environmental status that affects the normal growth, development and reproduction of an organism. Various abiotic stresses are drought, salinity, heat, flood, reactive oxygen species etc. Generally stress cause reduction in quality and quantity of yield in agricultural crops. But in case of medicinal and aromatic plant it has been found to enhance both qualitative and quantitative yield. In this article we are going to understand the mechanism that will change our view towards abiotic stresses.

Keywords


Abiotic Stress, Medicinal Plants, Quality Yield, Advantage of Stress.

References