Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Breaching the Barriers of Chemotherapeutics for Breast Cancer with Alternative Medicine


Affiliations
1 Division of Biomedical and Life-Science, School of Science, Navrachana University, Vadodara − 391410, Gujarat, India
2 School of Science, Navrachana University, Vadodara − 391410, Gujarat, India
     

   Subscribe/Renew Journal


Breast cancer is one of the most prevalent forms of cancers in women around the world. Owing to its biochemical variation and complexity, treatment with chemotherapy and/or radiotherapy is very complicated and often results in adverse side effects. This article reviews the widely practiced chemotherapeutic drugs, their modes of actions and side effects. The several breast cancer therapeutic approaches based on medicinal plants, hormones, nutritional supplements and/or some advanced drug delivery systems that may lead to faster recovery are also reviewed.

Keywords

Alternative Therapy, Breast Cancer Therapy, Chemotherapeutics.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Breast Cancer. 2018. https://www.who.int/cancer/ prevention/diagnosis-screening/breast-cancer/en/.
  • Lacey JV, Kreimer AR, Buys SS et al. Breast cancer epidemiology according to recognized breast cancer risk factors in the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial Cohort. BMC Cancer, 2009; 9:84. https://doi.org/10.1186/1471-2407-9-8. PMid:19134206 PMCid:PMC2645422.
  • Danaei G, Vander Hoorn S, Lopez AD et al. Causes of cancer in the world: Comparative risk assessment of nine behavioural and environmental risk factors. The Lancet. 2005; 366(9499):1784-1793. https://doi.org/10.1016/ S0140-6736(05)67725-2.
  • Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1):57-70. https://doi.org/10.1016/S0092- 8674(00)81683-9.
  • Suter R, Marcum JA. The molecular genetics of breast cancer and targeted therapy. Biologics. 2007; 1(3):241-258.
  • Schneeweiss A, Ruckhäberle E, Huober J. Chemotherapy for metastatic breast cancer-an anachronism in the era of personalised and targeted oncological therapy? Geburtshilfe Frauenheilkunde. 2015; 75(6):574-583. https://doi.org/10.1055/s-0035-1546150. PMid:26166838 PMCid:PMC4490921.
  • Rouzier R, Perou CM, Symmans WF et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clinical Cancer Research. 2005; 11(16):5678-5685. https://doi.org/10.1158/1078-0432. CCR-04-2421.PMid:16115903.
  • Gegechkori N, Haines L, Lin JJ. Long-term and latent side effects of specific cancer types. Medical Clinics. 2017; 101(6):1053-1073. https://doi.org/10.1016/j. mcna.2017.06.003. PMid:28992854 PMCid:PMC5777532.
  • Fojo T, Menefee M. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Annals of Oncology. 2007; 18:v3-v8. https://doi.org/10.1093/ annonc/mdm172. PMid:17656560.
  • Kamath K, Wilson L, Cabral F, Jordan MA. βIII-tubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. Journal of Biological Chemistry. 2005; 280(13):12902-12907. https:// doi.org/10.1074/jbc.M414477200. PMid:15695826.
  • Paradiso A, Mangia A, Chiriatti A, et al. Biomarkers predictive for clinical efficacy of taxol-based chemotherapy in advanced breast cancer. Annals of Oncology. 2005; 16:iv14-iv19. https://doi.org/10.1093/annonc/mdi902. PMid:15923415.
  • Tommasi S, Mangia A, Lacalamita R et al. Cytoskeleton and paclitaxel sensitivity in breast cancer: The role of β‐tubulins. International Journal of Cancer. 2007; 120(10):2078-2085. https://doi.org/10.1002/ijc.22557. PMid:17285590.
  • Thorn CF, Oshiro C, Marsh S et al. Doxorubicin pathways: Pharmacodynamics and adverse effects. Pharmacogenetics and Genomics. 2011; 21(7):440-446. https://doi. org/10.1097/FPC.0b013e32833ffb56. PMid:21048526 PMCid:PMC3116111.
  • Lao J, Madani J, Puértolas T et al. Liposomal doxorubicin in the treatment of breast cancer patients: A review. Journal of Drug Delivery. 2013. https://doi.org/10.1155/2013/456409. PMid:23634302 PMCid:PMC3619536.
  • Aggarwal S, Verma SS, Aggarwal S, Gupta SC. Drug Repurposing for Breast Cancer Therapy: Old Weapon for New Battle. In: Seminars in Cancer Biology. Academic Press; 2021. 68, p. 8-10. https://doi. org/10.1016/j.semcancer.2019.09.012. PMid:31550502 PMCid:PMC7128772.
  • Weaver BA. How taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell. 2014; 25(18): 2677-2681. https://doi.org/10.1091/mbc.e14-04-0916. PMid:25213191 PMCid:PMC4161504.
  • Abulkhair O, El Melou, W. Delayed paclitaxeltrastuzumab- induced interstitial pneumonitis in breast cancer. Case Reports in Oncology. 2011; 4(1):186-191. https://doi.org/10.1159/000326063. PMid:21516267 PMCid:PMC3080783.
  • Miele E, Spinelli GP, Miele E et al. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. International Journal of Nanomedicine. 2009; 4:99-105. https://doi.org/10.2147/ IJN.S3061. PMid:19516888 PMCid:PMC2720743.
  • Herbst RS, Khuri FR. Mode of action of docetaxel-a basis for combination with novel anti-cancer agents. Cancer Treatment Reviews. 2003; 29(5):407-415. https://doi. org/10.1016/S0305-7372(03)00097-5.
  • Ho MY, Mackey JR. Presentation and management of docetaxel-related adverse effects in patients with breast cancer. Cancer Management and Research. 2014; 6:253-259. https://doi.org/10.2147/CMAR.S40601. PMid:24904223 PMCid:PMC4041377.
  • Moore YA. Clinical applications for topical 5-fluorouracil in the treatment of dermatological disorders. Journal of Dermatological Treatment. 2009; 20(6):328-335. https:// doi.org/10.3109/09546630902789326. PMid:19954388.
  • Nabholtz JM, Cantin J, Chang J et al. Phase III trial comparing granulocyte colony-stimulating factor to leridistim in the prevention of neutropenic complications in breast cancer patients treated with docetaxel/doxorubicin/ cyclophosphamide: Results of the BCIRG 004 trial. Clinical Breast Cancer. 2002; 3(4):268-275. https://doi.org/10.3816/ CBC.2002.n.030. PMid:12425755.
  • De Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH. Clinical pharmacokinetics of cyclophosphamide. Clinical Pharmacokinetics. 2005; 44(11):1135-1164. https://doi. org/10.2165/00003088-200544110-00003. PMid:16231966.
  • Zeng F, Ju RJ, Liu L et al. Application of functional vincristine plus dasatinib liposomes to deletion of vasculogenic mimicry channels in triple-negative breast cancer. Oncotarget. 2015; 6(34):36625-36642. https:// doi.org/10.18632/oncotarget.5382. PMid:26429872 PMCid:PMC4742200.
  • Radford JA, Knight RK, Rubens RD. (1985). Mitomycin C and vinblastine in the treatment of advanced breast cancer. European Journal of Cancer and Clinical Oncology. 1985; 21(12):1475-1477. https://doi.org/10.1016/0277- 5379(85)90241-X.
  • Cybulska-StopaB, Ziobro M, Skoczek M et al. Evaluation of vinorelbine-based chemotherapy as the second or further-line treatment in patients with metastatic breast cancer. Contemporary Oncology. 2013; 17(1):78-82. https://doi.org/10.5114/wo.2013.33779. PMid:23788967 PMCid:PMC3685356.
  • Siddik ZH. Cisplatin: Mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003; 22(47):7265-7279. https://doi.org/10.1038/sj.onc.1206933. PMid:14576837.
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology. 2014; 740:364-378. https://doi. org/10.1016/j.ejphar.2014.07.025. PMid:25058905 PMCid: PMC4146684.
  • Von Minckwitz G, Schneeweiss A, Loibl S et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): A randomised phase 2 trial. The Lancet Oncology. 2014; 15(7):747-756. https://doi.org/10.1016/S1470- 2045(14)70160-3.
  • Smorenburg CH, Bontenbal M, Verweij J. Capecitabine in breast cancer: Current status. Clinical Breast Cancer. 2001; 1(4):288-293. https://doi.org/10.3816/CBC.2001.n.003. PMid:11899351.
  • Vogelstein B, Papadopoulos N, Velculescu VE et al. Cancer genome landscapes. Science. 2013; 339(6127):1546-1558. https://doi.org/10.1126/science.1235122. PMid:23539594 PMCid:PMC3749880.
  • Greenwell M, Rahman PKSM. Medicinal plants: Their use in anticancer treatment. International Journal of Pharmaceutical Sciences and Research. 2015; 6(10):4103- 4112.
  • Steigerová J, Oklešťková J, Levková M, Rárová L, Kolář Z, Strnad M. Brassinosteroids cause cell cycle arrest and apoptosis of human breast cancer cells. Chemicobiological Interactions. 2010: 188(3):487-496. https://doi. org/10.1016/j.cbi.2010.09.006. PMid:20833159.
  • Yin SY, Wei WC, Jian FY, Yang NS. Therapeutic applications of herbal medicines for cancer patients. Evidence-Based Complementary and Alternative Medicine. 2013. https://doi.org/10.1155/2013/302426. https://doi.org/10.1155/2013/302426. PMid:23956768 PMCid:PMC3727181.
  • Thangapazham RL, Singh AK, Sharma A et al. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Letters. 2007; 245(1-2):232-241. https:// doi.org/10.1016/j.canlet.2006.01.027. PMid:16519995,
  • Biswal BM, Sulaiman SA, Ismail HC et al. Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integrative Cancer Therapies. 2013; 12(4):312-322. https://doi.org/10.1177/1534735412464551. PMid:23142798.
  • Rossi RE, Pericleous M, Mandair D, Whyand T, Caplin ME. The role of dietary factors in prevention and progression of breast cancer. Anticancer Research. 2014; 34(12):6861- 6875.
  • Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ. Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert Opinion on Investigational Drugs. 2012; 21(6):819-831. https://doi.org/10.1517/13543784.20 12.681045. PMid:22500582.
  • Goncalves NDN, Colombo J, Lopes JR et al. Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PloS One. 2016; 11(3):e0150407. doi: 10.1371/journal.pone.0150407. https://doi.org/10.1371/ journal.pone.0150407. PMid:26934679 PMCid:PMC 4774906.
  • Jardim-Perassi B, Lourenço MR, Doho GM et al. Melatonin regulates angiogenic factors under hypoxia in breast cancer cell lines. Anti-Cancer Agents in Medicinal Chemistry. 2016; 16(3):347-358. https://doi.org/10.2174/18715206156 66150511094201. PMid:25963143.
  • Alvarez‐García V, González A, Alonso‐González C et al. Regulation of vascular endothelial growth factor by melatonin in human breast cancer cells. Journal of Pineal Research. 2013; 54(4):373-380. https://doi.org/10.1111/ jpi.12007. PMid:23013414.
  • Pires de Campos Zuccari D, Jardim BV, Lope, JR et al. Evaluation of hypoxia inducible factor 1-alpha (HIF1A) after treatment with melatonin in breast cancer cell line. European Journal of Cancer. 2012; 48:S254-S255. https:// doi.org/10.1016/S0959-8049(12)71665-9.
  • Rosanò L, Spinella F, Bagnato A. Endothelin 1 in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer. 2013; 13(9):637-651. https://doi. org/10.1038/nrc3546. PMid:23884378.
  • Demaria S, Pikarsky E, Karin M et al. Cancer and inflammation: promise for biological therapy. Journal of Immunotherapy. 2010; 33(4):335-351. https://doi. org/10.1097/CJI.0b013e3181d32e74. PMid:20386472 PMCid:PMC2941912.
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008; 454(7203):436-444. https:// doi.org/10.1038/nature07205. PMid:18650914.
  • Woo SM, Min KJ, Kwon TK. Melatonin‐mediated Bim up‐regulation and cyclooxygenase‐2 (COX‐2) downregulation enhances tunicamycin‐induced apoptosis in MDA‐MB‐231 cells. Journal of Pineal Research. 2015; 58(3):310-320. https://doi.org/10.1111/jpi.12217. PMid:25711465.
  • Zhang SL, Chen TS, Ma CY et al. Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality: A PRISMA-compliant cumulative meta-analysis of randomized controlled trials. Medicine. 2016; 95(31):e3485. https://doi. org/10.1097/MD.0000000000003485. PMid:27495015 PMCid:PMC4979769.
  • Wu W, Kang S, Zhang D. Association of vitamin B 6, vitamin B 12 and methionine with risk of breast cancer: A doseresponse meta-analysis. British Journal of Cancer. 2013; 109(7):1926-1944. https://doi.org/10.1038/bjc.2013.438. PMid:23907430 PMCid:PMC3790153.
  • Ullah MF, Khan HY, Zubair H et al. The antioxidant ascorbic acid mobilizes nuclear copper leading to a prooxidant breakage of cellular DNA: Implications for chemotherapeutic action against cancer. Cancer Chemotherapy and Pharmacology. 2011; 67(1):103- 110. https://doi.org/10.1007/s00280-010-1290-4. PMid: 20213077.
  • Codini M. Why Vitamin C could be an excellent complementary remedy to conventional therapies for breast cancer. International Journal of Molecular Sciences. 2020; 21(21):8397. doi: 10.3390/ijms21218397. https://doi.org/10.3390/ijms21218397. PMid:33182353 PMCid:PMC7664876.
  • Bober P, Alexovic M, Talian I et al. Proteomic analysis of the vitamin C effect on the doxorubicin cytotoxicity in the MCF-7 breast cancer cell line. Journal of Cancer Research and Clinical Oncology. 2017; 143(1):35-42. https://doi. org/10.1007/s00432-016-2259-4. PMid:27620743.
  • Hong SW, Lee SH, Moon JH et al. SVCT-2 in breast cancer acts as an indicator for L-ascorbate treatment. Oncogene. 2013; 32(12):1508-1517. https://doi.org/10.1038/ onc.2012.176. PMid:22665050.
  • Hatem E, Azzi S, El Banna N et al. Auranofin/vitamin C: A novel drug combination targeting triple-negative breast cancer. Journal of the National Cancer Institute. 2019; 111(6):597-608. https://doi.org/10.1093/jnci/djy149. PMid:30779852.
  • Zeng LH, Wang QM, Feng LY et al. High-dose vitamin C suppresses the invasion and metastasis of breast cancer cells via inhibiting epithelial-mesenchymal transition. Onco Targets and Therapy. 2019; 12, 7405-7413. https://doi.org/10.2147/OTT.S222702. PMid:31571901 PMCid:PMC6753468.
  • Evans RM. The steroid and thyroid hormone receptor superfamily. Science. 1988; 240(4854):889-895. https:// doi.org/10.1126/science.3283939. PMid:3283939 PMCid: PMC6159881.
  • Carlber C. Current understanding of the function of the nuclear vitamin D receptor in response to its natural and synthetic ligands. Recect Results in Cancer Research. 2003; 164:29-42. https://doi.org/10.1007/978-3-642-55580-0_2. PMid:12899512.
  • Shao T, Klein P, Grossbard ML. Vitamin D and breast cancer. The Oncologist. 2012; 17(1):36-45. https://doi. org/10.1634/theoncologist.2011-0278. PMid:22234628 PMCid:PMC3267821.
  • Kumar SR, Priyatharshni S, Babu VN et al. Quercetin conjugated superparamagnetic magnetite nanoparticles for in-vitro analysis of breast cancer cell lines for chemotherapy applications. Journal of Colloid and Interface Science. 2014; 436:234-242. https://doi.org/10.1016/j.jcis.2014.08.064. PMid:25278361.
  • Denkert C, von Minckwitz G, Darb-Esfahani S et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. The Lancet Oncology. 2018; 19(1):40-50. https://doi.org/10.1016/ S1470-2045(17)30904-X.
  • Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. Journal of the National Comprehensive Cancer Network. 2020; 18(4):479-489. https://doi.org/10.6004/jnccn.2020.7554. PMid:32259782.
  • Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science. 2018; 359(6382):1350-1355. https://doi.org/10.1126/science.aar4060. PMid:29567705 PMCid:PMC7391259.
  • Mendell JT. Targeting a long noncoding RNA in breast cancer. New England Journal of Medicine. 2016; 374(23):2287-2289. https://doi.org/10.1056/ NEJMcibr1603785. PMid:27276568.
  • Jin X, Xu X E, Jiang YZ et al. The endogenous retrovirusderived long noncoding RNA TROJAN promotes triple-negative breast cancer progression via ZMYND8 degradation. Science Advances. 2019; 5(3):eaat9820. https://doi.org/10.1126/sciadv.aat9820. PMid:30854423 PMCid:PMC6402854
  • Tchou J, Zhao Y, Levine BL et al. Safety and efficacy of intratumoral injections of Chimeric Antigen Receptor (CAR) T cells in metastatic breast cancer. Cancer Immunology Research. 2017; 5(12):1152-1161. https:// doi.org/10.1158/2326-6066.CIR-17-0189. PMid:29109077 PMCid:PMC5712264.

Abstract Views: 461

PDF Views: 0




  • Breaching the Barriers of Chemotherapeutics for Breast Cancer with Alternative Medicine

Abstract Views: 461  |  PDF Views: 0

Authors

Khushali Upadhyay
Division of Biomedical and Life-Science, School of Science, Navrachana University, Vadodara − 391410, Gujarat, India
Foram Patel
Division of Biomedical and Life-Science, School of Science, Navrachana University, Vadodara − 391410, Gujarat, India
A. V. Ramachandran
School of Science, Navrachana University, Vadodara − 391410, Gujarat, India
Elizabeth Robin
Division of Biomedical and Life-Science, School of Science, Navrachana University, Vadodara − 391410, Gujarat, India
Darshee Baxi
Division of Biomedical and Life-Science, School of Science, Navrachana University, Vadodara − 391410, Gujarat, India

Abstract


Breast cancer is one of the most prevalent forms of cancers in women around the world. Owing to its biochemical variation and complexity, treatment with chemotherapy and/or radiotherapy is very complicated and often results in adverse side effects. This article reviews the widely practiced chemotherapeutic drugs, their modes of actions and side effects. The several breast cancer therapeutic approaches based on medicinal plants, hormones, nutritional supplements and/or some advanced drug delivery systems that may lead to faster recovery are also reviewed.

Keywords


Alternative Therapy, Breast Cancer Therapy, Chemotherapeutics.

References





DOI: https://doi.org/10.18311/jer%2F2021%2F27792