Open Access
Subscription Access
Open Access
Subscription Access
Peptidyl Arginine Deiminase 2 (PADI2) is Expressed in Post-Meiotic Germ Cells in the Mouse Testis and is Localized Heavily on the Acrosomal Region of Spermatozoa
Subscribe/Renew Journal
Peptidyl Arginine Deiminase 2 (PADI2) is a widely expressed Ca2+ ion-dependent enzyme in rodents and humans belonging to Peptidyl Arginine Deiminases (PAD) family. It regulates various cellular processes like proliferation, differentiation, apoptosis, migration, epithelial-mesenchymal transition and chromatin organization. Altered expression of PADI2 was associated with various autoimmune diseases, neurological disorders and different types of cancers. Based on our previously published miRNA-mRNA network during the first wave of spermatogenesis in the mouse, Padi2 appeared to be a common potential target of miR-34c and miR-449a in the mouse testes. In the present study, the expression of Padi2 in the mouse testes during the first wave of spermatogenesis was evaluated using real-time PCR, western blot analysis and immunohistochemistry. Transcript levels of Padi2 showed progressive down-regulation during the first wave of spermatogenesis. However, we detected a progressive increase in the levels of PADI2 as the first wave of spermatogenesis progressed, with heavy expression of this protein in post-meiotic germ cells. Additionally, a prominent localization of PADI2 in the acrosomal region of late spermatids and spermatozoa was identified through immunohistochemical analysis. Padi2 expression was identified in germ cell-derived cell lines, C18-4 and GC-1 spg as well. Thus, the present study illustrates for the first time the expression of PADI2 in germ cells in the testis and its predominant localization on the acrosome region of spermatozoa, suggesting its potential role in fertilization.
Keywords
Gene Expression, Peptidyl Arginine Deiminase 2, Spermatogonia, Spermatogenesis, Testis.
Subscription
Login to verify subscription
User
Font Size
Information
- Bianchi E, Wright GJ. Find and fuse: Unsolved mysteries in sperm-egg recognition. PLoS Biol. 2020; 18(11):e3000953. https://doi.org/10.1371/journal.pbio.3000953.
- Georgadaki K, Khoury N, Spandidos DA, Zoumpourlis V. The molecular basis of fertilization (Review). Int J Mol Med. 2016; 38(4):979-986. https://doi.org/10.3892/ijmm.2016.2723.
- Klinovska K, Sebkova N, Dvorakova-Hortova K. Sperm-egg fusion: A molecular enigma of mammalian reproduction. Int J Mol Sci. 2014; 15(6):10652-10668. https://doi.org/10.3390/ijms150610652.
- Tosti E, Menezo Y. Gamete activation: Basic knowledge and clinical applications. Hum Reprod Update. 2016; 22(4):420- 439. https://doi.org/10.1093/humupd/dmw014.
- Trebichalska Z, Holubcova Z. Perfect date-the review of current research into molecular bases of mammalian fertilization. J Assist Reprod Genet. 2020; 37(2):243-256. https://doi.org/10.1007/s10815-019-01679-4.
- Breitbart H, Cohen G, Rubinstein S. Role of actin cytoskeleton in mammalian sperm capacitation and the acrosome reaction. Reproduction. 2005; 129(3):263-268. https://doi.org/10.1530/rep.1.00269.
- Brener E, Rubinstein S, Cohen G, Shternall K, Rivlin J, Breitbart H. Remodeling of the actin cytoskeleton during mammalian sperm capacitation and acrosome reaction. Biol Reprod. 2003; 68(3):837-845. https://doi.org/10.1095/biolreprod.102.009233.
- Griswold MD. Spermatogenesis: The Commitment to Meiosis. Physiol Rev. 2016; 96(1):1-17. https://doi.org/10.1152/physrev.00013.2015.
- Lie PP, Mruk DD, Lee WM, Cheng CY. Cytoskeletal dynamics and spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010; 365(1546):1581-1592. https://doi.org/10.1098/rstb.2009.0261.
- Rathke C, Baarends WM, Awe S, Renkawitz-Pohl R. Chromatin dynamics during spermiogenesis. Biochim Biophys Acta. 2014; 1839(3):155-168. https://doi.org/10.1016/j.bbagrm.2013.08.004.
- Staub C, Johnson L. Review: Spermatogenesis in the bull. Animal. 2018; 12(s1):s27-s35. https://doi.org/10.1017/S1751731118000435.
- Teves ME, Roldan ERS, Krapf D, Strauss JF, III, Bhagat V, Sapao P. Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci. 2020; 21(10). https://doi.org/10.3390/ijms21103702.
- Xiao X, Mruk DD, Wong CKC, Cheng CY. Germ cell transport across the seminiferous epithelium during spermatogenesis. Physiology (Bethesda). 2014; 29(4):286- 298. https://doi.org/10.1152/physiol.00001.2014.
- Foster JA, Gerton GL. The Acrosomal Matrix. Adv Anat Embryol Cell Biol. 2016; 220:15-33. https://doi.org/10.1007/978-3-319-30567-7_2.
- Hirohashi N, Yanagimachi R. Sperm acrosome reaction: Its site and role in fertilization. Biol Reprod. 2018; 99(1):127-133. https://doi.org/10.1093/biolre/ioy045.
- Berruti G, Paiardi C. Acrosome biogenesis: Revisiting old questions to yield new insights. Spermatogenesis. 2011; 1(2):95-98. https://doi.org/10.4161/spmg.1.2.16820.
- Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M. SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development. 2012; 139(19):3583-3589. https://doi.org/10.1242/dev.081778.
- Lin YN, Roy A, Yan W, Burns KH, Matzuk MM. Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol. 2007; 27(19):6794-6805. https://doi.org/10.1128/MCB.01029-07.
- Miyazaki T, Mori M, Yoshida CA, Ito C, Yamatoya K, Moriishi T, et al. Galnt3 deficiency disrupts acrosome formation and leads to oligoasthenoteratozoospermia. Histochem Cell Biol. 2013; 139(2):339-354. https://doi.org/10.1007/s00418-012-1031-3.
- Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, et al. Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development. 2012; 139(16):2955-2965. https://doi.org/10.1242/dev.077982.
- Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, et al. PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest. 2009; 119(4):802-812. https://doi.org/10.1172/JCI36230.
- Paiardi C, Pasini ME, Gioria M, Berruti G. Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. Spermatogenesis. 2011; 1(1):52-62. https://doi.org/10.4161/spmg.1.1.14698.
- Schmitt-John T, Drepper C, Mussmann A, Hahn P, Kuhlmann M, Thiel C, et al. Mutation of Vps54 causes motor neuron disease and defective spermiogenesis in the wobbler mouse. Nat Genet. 2005; 37(11):1213-1215. https://doi.org/10.1038/ng1661.
- Haddad M, Stewart J, Xie P, Cheung S, Trout A, Keating D, et al. Thoughts on the popularity of ICSI. J Assist Reprod Genet. 2021; 38(1):101-123. https://doi.org/10.1007/s10815-020-01987-0.
- Neri QV, Lee B, Rosenwaks Z, Machaca K, Palermo GD. Understanding fertilization through intracytoplasmic sperm injection (ICSI). Cell Calcium. 2014; 55(1):24-37. https://doi.org/10.1016/j.ceca.2013.10.006.
- Tavalaee M, Nomikos M, Lai FA, Nasr-Esfahani MH. Expression of sperm PLCzeta and clinical outcomes of ICSIAOA in men affected by globozoospermia due to DPY19L2 deletion. Reprod Biomed Online. 2018; 36(3):348-355. https://doi.org/10.1016/j.rbmo.2017.12.013.
- Khawar MB, Gao H, Li W. Mechanism of Acrosome Biogenesis in Mammals. Front Cell Dev Biol. 2019; 7:195. https://doi.org/10.3389/fcell.2019.00195.
- Nasr-Esfahani MH, Razavi S, Javdan Z, Tavalaee M. Artificial oocyte activation in severe teratozoospermia undergoing intracytoplasmic sperm injection. Fertil Steril. 2008; 90(6):2231-2237. https://doi.org/10.1016/j.fertnstert.2007.10.047.
- Chen SR, Batool A, Wang YQ, Hao XX, Chang CS, Cheng CY, et al. The control of male fertility by spermatidspecific factors: searching for contraceptive targets from spermatozoon’s head to tail. Cell Death Dis. 2016; 7(11):e2472. https://doi.org/10.1038/cddis.2016.344.
- Suri A. Sperm-based contraceptive vaccines: current status, merits and development. Expert Rev Mol Med. 2005; 7(18):1-16. https://doi.org/10.1017/S1462399405009877.
- Kaur K, Prabha V. Immunocontraceptives: New approaches to fertility control. Biomed Res Int. 2014; 2014:868196. https://doi.org/10.1155/2014/868196.
- Sree S, Radhakrishnan K, Indu S, Kumar PG. Dramatic changes in 67 miRNAs during initiation of first wave of spermatogenesis in Mus musculus testis: Global regulatory insights generated by miRNA-mRNA network analysis. Biol Reprod. 2014; 91(3):69. https://doi.org/10.1095/biolreprod.114.119305.
- Tsuji-Hosokawa A, Kashimada K, Kato T, Ogawa Y, Nomura R, Takasawa K, et al. Peptidyl arginine deiminase 2 (Padi2) is expressed in Sertoli cells in a specific manner and regulated by SOX9 during testicular development. Sci Rep. 2018; 8(1):13263. https://doi.org/10.1038/s41598-018-31376-8.
- Alghamdi M, Al Ghamdi KA, Khan RH, Uversky VN, Redwan EM. An interplay of structure and intrinsic disorder in the functionality of peptidylarginine deiminases, a family of key autoimmunity-related enzymes. Cell Mol Life Sci. 2019; 76(23):4635-4662. https://doi.org/10.1007/ s00018-019-03237-8.
- Rogers GE, Harding HW, Llewellyn-Smith IJ. The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta. 1977; 495(1):159-175. https://doi.org/10.1016/0005-2795(77)90250-1.
- Witalison EE, Thompson PR, Hofseth LJ. Protein Arginine Deiminases and Associated Citrullination: Physiological Functions and Diseases Associated with Dysregulation. Curr Drug Targets. 2015; 16(7):700-710. https://doi.org/10.2174/1389450116666150202160954.
- Alghamdi M, Alasmari D, Assiri A, Mattar E, Aljaddawi AA, Alattas SG, et al. An Overview of the Intrinsic Role of Citrullination in Autoimmune Disorders. J Immunol Res. 2019; 2019:7592851. https://doi.org/10.1155/2019/7592851.
- Nagata S, Senshu T. Peptidylarginine deiminase in rat and mouse hemopoietic cells. Experientia. 1990; 46(1):72-74. https://doi.org/10.1007/BF01955420.
- Rus’d AA, Ikejiri Y, Ono H, Yonekawa T, Shiraiwa M, Kawada A, et al. Molecular cloning of cDNAs of mouse peptidylarginine deiminase type I, type III and type IV, and the expression pattern of type I in mouse. Eur J Biochem. 1999; 259(3):660-669. https://doi.org/10.1046/j.1432- 1327.1999.00083.x.
- Urano Y, Watanabe K, Sakaki A, Arase S, Watanabe Y, Shigemi F, et al. Immunohistochemical demonstration of peptidylarginine deiminase in human sweat glands. Am J Dermatopathol. 1990; 12(3):249-255. https://doi.org/10.1097/00000372-199006000-00005.
- `Wang S, Wang Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim Biophys Acta. 2013; 1829(10):1126-135. https:// doi.org/10.1016/j.bbagrm.2013.07.003.
- Watanabe K, Akiyama K, Hikichi K, Ohtsuka R, Okuyama A, Senshu T. Combined biochemical and immunochemical comparison of peptidylarginine deiminases present in various tissues. Biochim Biophys Acta. 1988; 966(3):375-383. https://doi.org/10.1016/0304-4165(88)90088-8.
- Watanabe K, Senshu T. Isolation and characterization of cDNA clones encoding rat skeletal muscle peptidylarginine deiminase. J Biol Chem. 1989; 264(26):15255-15260. https://doi.org/10.1016/S0021-9258(19)84818-4.
- van Beers JJ, Zendman AJ, Raijmakers R, Stammen- Vogelzangs J, Pruijn GJ. Peptidylarginine deiminase expression and activity in PAD2 knock-out and PAD4- low mice. Biochimie. 2013; 95(2):299-308. https://doi.org/10.1016/j.biochi.2012.09.029.
- Falcao AM, Meijer M, Scaglione A, Rinwa P, Agirre E, Liang J, et al. PAD2-Mediated Citrullination Contributes to Efficient Oligodendrocyte Differentiation and Myelination. Cell Rep. 2019; 27(4):1090-1102 e10. https://doi.org/10.1016/j.celrep.2019.03.108.
- Assohou-Luty C, Raijmakers R, Benckhuijsen WE, Stammen-Vogelzangs J, de Ru A, van Veelen PA, et al. The human peptidylarginine deiminases type 2 and type 4 have distinct substrate specificities. Biochim Biophys Acta. 2014; 1844(4):829-836. https://doi.org/10.1016/j.bbapap.2014.02.019.
- Cantarino N, Musulen E, Valero V, Peinado MA, Perucho M, Moreno V, et al. Downregulation of the Deiminase PADI2 Is an Early Event in Colorectal Carcinogenesis and Indicates Poor Prognosis. Mol Cancer Res. 2016; 14(9):841-848. https://doi.org/10.1158/1541-7786.MCR-16-0034.
- Kanno T, Kawada A, Yamanouchi J, Yosida-Noro C, Yoshiki A, Shiraiwa M, et al. Human peptidylarginine deiminase type III: Molecular cloning and nucleotide sequence of the cDNA, properties of the recombinant enzyme, and immunohistochemical localization in human skin. J Invest Dermatol. 2000; 115(5):813-823. https://doi.org/10.1046/ j.1523-1747.2000.00131.x.
- Christophorou MA, Castelo-Branco G, Halley-Stott RP, Oliveira CS, Loos R, Radzisheuskaya A, et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature. 2014; 507(7490):104-108. https://doi.org/10.1038/nature12942.
- Beato M, Sharma P. Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. Int J Mol Sci. 2020; 21(4). https://doi.org/10.3390/ijms21041351.
- Khajavi M, Zhou Y, Birsner AE, Bazinet L, Rosa Di Sant A, Schiffer AJ, et al. Identification of Padi2 as a novel angiogenesis-regulating gene by genome association studies in mice. PLoS Genet. 2017; 13(6):e1006848. https://doi.org/10.1371/journal.pgen.1006848.
- Zhou Y, Mittereder N, Sims GP. Perspective on Protein Arginine Deiminase Activity-Bicarbonate is a pH-Independent Regulator of Citrullination. Front Immunol. 2018; 9:34. https://doi.org/10.3389/fimmu.2018.00034.
- Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. The Essential Role of Peptidylarginine Deiminases 2 for Cytokines Secretion, Apoptosis, and Cell Adhesion in Macrophage. Int J Mol Sci. 2020; 21(16). https://doi.org/10.3390/ijms21165720.
- Shimada N, Handa S, Uchida Y, Fukuda M, Maruyama N, Asaga H, et al. Developmental and age-related changes of peptidylarginine deiminase 2 in the mouse brain. J Neurosci Res. 2010; 88(4):798-806. https://doi.org/10.1002/jnr.22255.
- Liu L, Zhang Z, Zhang G, Wang T, Ma Y, Guo W. Down-regulation of PADI2 prevents proliferation and epithelial-mesenchymal transition in ovarian cancer through inhibiting JAK2/STAT3 pathway in vitro and in vivo, alone or in combination with Olaparib. J Transl Med. 2020; 18(1):357. https://doi.org/10.1186/s12967-020- 02528-0.
- Khan SA, Edwards BS, Muth A, Thompson PR, Cherrington BD, Navratil AM. GnRH Stimulates Peptidylarginine Deiminase Catalyzed Histone Citrullination in Gonadotrope Cells. Mol Endocrinol. 2016; 30(10):1081- 1091. https://doi.org/10.1210/me.2016-1085.
- Kan R, Jin M, Subramanian V, Causey CP, Thompson PR, Coonrod SA. Potential role for PADI-mediated histone citrullination in preimplantation development. BMC Dev Biol. 2012; 12:19. https://doi.org/10.1186/1471- 213X-12-19.
- Horibata S, Rogers KE, Sadegh D, Anguish LJ, McElwee JL, Shah P, et al. Role of peptidylarginine deiminase 2 (PAD2) in mammary carcinoma cell migration. BMC Cancer. 2017; 17(1):378. https://doi.org/10.1186/s12885-017-3354-x.
- Liu DY, Garrett C, Baker HW. Acrosome-reacted human sperm in insemination medium do not bind to the zona pellucida of human oocytes. Int J Androl. 2006; 29(4):475- 481. https://doi.org/10.1111/j.1365-2605.2006.00681.x.
- Chang X, Xia Y, Pan J, Meng Q, Zhao Y, Yan X. PADI2 is significantly associated with rheumatoid arthritis. PLoS One. 2013; 8(12):e81259. https://doi.org/10.1371/journal. pone.0081259.
- Cherrington BD, Zhang X, McElwee JL, Morency E, Anguish LJ, Coonrod SA. Potential role for PAD2 in gene regulation in breast cancer cells. PLoS One. 2012; 7(7):e41242. https://doi.org/10.1371/journal.pone.0041242.
- Darrah E, Giles JT, Davis RL, Naik P, Wang H, Konig MF, et al. Autoantibodies to Peptidylarginine Deiminase 2 Are Associated With Less Severe Disease in Rheumatoid Arthritis. Front Immunol. 2018; 9:2696. https://doi.org/10.3389/fimmu.2018.02696.
- Gao BS, Rong CS, Xu HM, Sun T, Hou J, Xu Y. Peptidyl Arginine Deiminase, Type II (PADI2) Is Involved in Urothelial Bladder Cancer. Pathol Oncol Res. 2020; 26(2):1279-1285. https://doi.org/10.1007/s12253-019-00687-0.
- Guo W, Zheng Y, Xu B, Ma F, Li C, Zhang X, et al. Investigating the expression, effect and tumorigenic pathway of PADI2 in tumors. Onco Targets Ther. 2017; 10:1475-1485. https://doi.org/10.2147/OTT.S92389.
- Wang H, Xu B, Zhang X, Zheng Y, Zhao Y, Chang X. PADI2 gene confers susceptibility to breast cancer and plays tumorigenic role via ACSL4, BINC3 and CA9 signaling. Cancer Cell Int. 2016; 16:61. https://doi.org/10.1186/ s12935-016-0335-0.
- Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, et al. PADI2-Mediated Citrullination Promotes Prostate Cancer Progression. Cancer Res. 2017; 77(21):5755-5768. https://doi.org/10.1158/0008-5472.CAN-17-0150.
- Mohanan S, Horibata S, Anguish LJ, Mukai C, Sams K, McElwee JL, et al. PAD2 over expression in transgenic mice augments malignancy and tumor-associated inflammation in chemically initiated skin tumors. Cell Tissue Res. 2017; 370(2):275-283. https://doi.org/10.1007/s00441-017-2669-x.
- McElwee JL, Mohanan S, Horibata S, Sams KL, Anguish LJ, McLean D, et al. PAD2 over expression in transgenic mice promotes spontaneous skin neoplasia. Cancer Res. 2014; 74(21):6306-6317. https://doi.org/10.1158/0008-5472.CAN-14-0749.
- Inagaki M, Takahara H, Nishi Y, Sugawara K, Sato C. Ca2+-dependent deimination-induced disassembly of intermediate filaments involves specific modification of the amino-terminal head domain. J Biol Chem. 1989; 264(30):18119-18127. https://doi.org/10.1016/S0021-9258(19)84685-9.
- Saiki M, Watase M, Matsubayashi H, Hidaka Y. Recognition of the N-terminal histone H2A and H3 peptides by peptidylarginine deiminase IV. Protein Pept Lett. 2009; 16(9):1012-1016. https://doi.org/10.2174/092986609789055449.
- Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, et al. Human PAD4 regulates histone arginine methylation levels via demethylimination. Science. 2004; 306(5694):279- 283. https://doi.org/10.1126/science.1101400.
- Lai NS, Yu HC, Tung CH, Huang KY, Huang HB, Lu MC. Increased peptidylarginine deiminases expression during the macrophage differentiation and participated inflammatory responses. Arthritis Res Ther. 2019; 21(1):108. https://doi.org/10.1186/s13075-019-1896-9.
- Liu Y, Lightfoot YL, Seto N, Carmona-Rivera C, Moore E, Goel R, et al. Peptidylarginine deiminases 2 and 4 modulate innate and adaptive immune responses in TLR- 7-dependent lupus. JCI Insight. 2018; 3(23):e124729. https://doi.org/10.1172/jci.insight.124729.
- Arif M, Kato T. Increased expression of PAD2 after repeated intracerebroventricular infusions of soluble Abeta(25-35) in the Alzheimer’s disease model rat brain: effect of memantine. Cell Mol Biol Lett. 2009; 14(4):703- 714. https://doi.org/10.2478/s11658-009-0029-x.
- Tu R, Grover HM, Kotra LP. Peptidyl Arginine Deiminases and Neurodegenerative Diseases. Curr Med Chem. 2016; 23(2):104-114. https://doi.org/10.2174/0929867323666151 118120710.
- Edfors F, Danielsson F, Hallström BM, Käll L, Lundberg E, Pontén F, et al. Gene-specific correlation of RNA and protein levels in human cells and tissues. Mol Syst Biol. 2016; 12(10):883. https://doi.org/10.15252/msb.20167144.
- Lin J, Amir A. Homeostasis of protein and mRNA concentrations in growing cells. Nat Commun. 2018; 9(1):4496. https://doi.org/10.1038/s41467-018-06714-z.
- Maier T, Güell M, Serrano L. Correlation of mRNA and protein in complex biological samples. FEBS Lett. 2009; 583(24):3966-3973. https://doi.org/10.1016/j. febslet.2009.10.036.
- Moritz CP, Mühlhaus T, Tenzer S, Schulenborg T, Friauf E. Poor transcript-protein correlation in the brain: negatively correlating gene products reveal neuronal polarity as a potential cause. J Neurochem. 2019; 149(5):582-604. https://doi.org/10.1111/jnc.14664.
- Payne SH. The utility of protein and mRNA correlation. Trends Biochem Sci. 2015; 40(1):1-3. https://doi.org/10.1016/j.tibs.2014.10.010.
- Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011; 473(7347):337-342. https://doi.org/10.1038/nature10098.
- Siewert E, Müller-Esterl W, Starr R, Heinrich PC, Schaper F. Different protein turnover of interleukin-6-type cytokine signalling components. Eur J Biochem. 1999; 265(1):251- 257. https://doi.org/10.1046/j.1432-1327.1999.00719.x.
- Dong S, Kojima T, Shiraiwa M, Mechin MC, Chavanas S, Serre G, et al. Regulation of the expression of peptidylarginine deiminase type II gene (PADI2) in human keratinocytes involves Sp1 and Sp3 transcription factors. J Invest Dermatol. 2005; 124(5):1026-1033. https://doi.org/10.1111/j.0022-202X.2005.23690.x.
- Chang HH, Liu GY, Dwivedi N, Sun B, Okamoto Y, Kinslow JD, et al. A molecular signature of preclinical rheumatoid arthritis triggered by dysregulated PTPN22. JCI Insight. 2016; 1(17):e90045. https://doi.org/10.1172/jci.insight.90045.
- Sun B, Chang HH, Salinger A, Tomita B, Bawadekar M, Holmes CL, et al. Reciprocal regulation of Th2 and Th17 cells by PAD2-mediated citrullination. JCI Insight. 2019; 4(22). https://doi.org/10.1172/jci.insight.129687.
- Zheng L, Nagar M, Maurais AJ, Slade DJ, Parelkar SS, Coonrod SA, et al. Calcium Regulates the Nuclear Localization of Protein Arginine Deiminase 2. Biochemistry. 2019; 58(27):3042-56. https://doi.org/10.1021/acs.biochem.9b00225.
- Sharma P, Lioutas A, Fernandez-Fuentes N, Quilez J, Carbonell-Caballero J, Wright RHG, et al. Arginine Citrullination at the C-Terminal Domain Controls RNA Polymerase II Transcription. Mol Cell. 2019; 73(1):84-96 e7. https://doi.org/10.1016/j.molcel.2018.10.016.
- Qu Y, Olsen JR, Yuan X, Cheng PF, Levesque MP, Brokstad KA, et al. Small molecule promotes β-catenin citrullination and inhibits Wnt signaling in cancer. Nat Chem Biol. 2018; 14(1):94-101. https://doi.org/10.1038/nchembio.2510.
- Slade DJ, Subramanian V, Thompson PR. Pluripotency: citrullination unravels stem cells. Nat Chem Biol. 2014; 10(5):327-328. https://doi.org/10.1038/nchembio.1504.
- Xiao S, Lu J, Sridhar B, Cao X, Yu P, Zhao T, et al. SMARCAD1 Contributes to the Regulation of Naive Pluripotency by Interacting with Histone Citrullination. Cell Rep. 2017; 18(13):3117-3128. https://doi.org/10.1016/j. celrep.2017.02.070.
Abstract Views: 438
PDF Views: 0