Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Pancreatic β-Cell Dysfunction in Diabetes


Affiliations
1 The Jackson Laboratory, Bar Harbor, 04609, Maine, United States
2 School of Science, Navrachana University, Vadodara 391410, Gujarat, India
     

   Subscribe/Renew Journal


The decline in functional β-cell mass and β-cell dysfunction causes diabetes. Pancreatic β-cells play a fundamental role in controlling the glucose milieu, and β-cells of diabetic patients poorly respond to glucose. The mechanism underlying the pathology of impaired β-cell function is a unique challenge. This concise review summarizes the identity of β-cells during the progression and established diabetes. Understanding β-cell heterogeneity and the dynamic functional state during health and disease progression would be important for designing diabetes therapeutics to restore the β-cell mass by cellreplacement or regeneration approaches.

Keywords

β-Cell Dedifferentiation, β-Cell Dysfunction, β-Cell Identity.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Gemmill CL. The Greek concept of diabetes. Bull N Y Acad Med. 1972; 48(8):1033-6.
  • Hegele RA, Maltman GM. Insulin’s centenary: the birth of an idea. Lancet Diabetes Endocrinol. 2020; 8(12):971-7. https://doi.org/10.1016/S2213-8587(20)30337-5 PMID:33129375
  • Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res Clin Pract. 2022; 183:109119. https://doi.org/10.1016/j.diabres.2021.109119 PMID:34879977
  • Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003; 52(1):102-10. https://doi.org/10.2337/diabetes.52.1.102 PMID:12502499
  • Ali O. Genetics of type 2 diabetes. World J Diabetes. 2013; 4(4):114-23. https://doi.org/10.4239/wjd.v4.i4.114 PMID:23961321 PMCID:PMC3746083
  • Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: Opportunities and challenges. Endocrine Connections. BioScientifica Ltd. 2021; p. R213-28. https://doi.org/10.1530/EC-21-0260 PMID:34289444 PMCID:PMC8428079
  • Jermendy A, Toschi E, Aye T, et al. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia. 2011; 54(3):594-604. https://doi.org/10.1007/s00125-010-2036-x PMID:21240476 PMCID:PMC3045081
  • Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β;-cell dedifferentiation in diabetes: Recent findings and future research directions. Journal of Endocrinology. BioScientifica Ltd. 2018; p. R109-43. https://doi.org/10.1530/JOE-17-0516 PMID:29203573
  • Diedisheim M, Oshima M, Albagli O, et al. Modeling human pancreatic beta cell dedifferentiation. Mol Metab. 2018; 10:74-86. https://doi.org/10.1016/j.molmet.2018.02.002 PMID:29472102 PMCID:PMC5985229
  • Talchai C, Xuan S, Lin HV, et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell. 2012; 150(6):1223-34. https://doi.org/10.1016/j.cell.2012.07.029 PMID:22980982 PMCID:PMC3445031
  • Sachs S, Bastidas-Ponce A, Tritschler S, et al. Targeted pharmacological therapy restores β-cell function for diabetes remission. Nat Metab. 2020; 2(2):192-209. https://doi.org/10.1038/s42255-020-0171-3 PMID:32694693
  • Dore BA, Grogan WM, Madge GE, et al. Biphasic development of the postnatal mouse pancreas. Biol Neonate. 1981; 40(5-6):209-17. https://doi.org/10.1159/000241494 PMID:7032613
  • Blum B, Hrvatin S, Schuetz C, et al. Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol. 2012; 30(3):261-4. https://doi.org/10.1038/nbt.2141 PMID:22371083 PMCID:PMC4617627
  • Jacovetti C, Matkovich SJ, Rodriguez-Trejo A, et al. Postnatal β-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat Commun. 2015; 6:8084. https://doi.org/10.1038/ncomms9084 PMID:26330140 PMCID:PMC4569696 15. Brunzell JD, Robertson RP, Lerner RL, et al. Relationships between fasting plasma glucose levels and insulin secretion during intravenous glucose tolerance tests. The Journal of Clinical Endocrinology and Metabolism. 1976; 42(2):222-9. https://doi.org/10.1210/jcem-42-2-222 PMID:1262429
  • Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 1999; 104(6):787-94. https://doi.org/10.1172/JCI7231 PMID:10491414 PMCID:PMC408438
  • van Haeften TW, Pimenta W, Mitrakou A, et al. Relative conributions of beta-cell function and tissue insulin sensitivity to fasting and postglucose-load glycemia. Metabolism. 2000; 49(10):1318-25. https://doi.org/10.1053/meta.2000.9526 PMID:11079822
  • White MG, Marshall HL, Rigby R, et al. Expression of mesenchymal and α-cell phenotypic markers in islet β-cells in recently diagnosed diabetes. Diabetes Care. 2013; 36(11):3818-20. https://doi.org/10.2337/dc13-0705 PMID:24062329 PMCID:PMC3816907
  • Marselli L, Suleiman M, Masini M, et al. Are we overestimating the loss of beta cells in type 2 diabetes? Diabetologia. 2014; 57(2):362-5. https://doi.org/10.1007/s00125-013-3098-3 PMID:24233056
  • Moin ASM, Butler AE. Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Curr Diab Rep. 2019; 19(9):83. https://doi.org/10.1007/s11892-019-1194-6 PMID:31401713 PMCID:PMC6689286
  • Rutter GA, Pullen TJ, Hodson DJ, et al. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J. 2015; 466(2):203-18. https://doi.org/10.1042/BJ20141384 PMID:25697093
  • Salinno C, Buttner M, Cota P, et al. CD81 marks immature and dedifferentiated pancreatic β-cells. Mol Metab. 2021; 49:101188. https://doi.org/10.1016/j.molmet.2021.101188 PMID:33582383 PMCID:PMC7932895
  • Salinno C, Cota P, Bastidas-Ponce A, et al. β-Cell Maturation and Identity in Health and Disease. Int J Mol Sci. 2019; 20(21). https://doi.org/10.3390/ijms20215417 PMID:31671683 PMCID:PMC6861993
  • Casteels T, Zhang Y, Frogne T, et al. An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol Metab. 2021; 54. https://doi.org/10.1016/j.molmet.2021.101329 PMID:34454092 PMCID:PMC8476777
  • Wang Z, York NW, Nichols CG, et al. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 2014; 19(5):872-82. https://doi.org/10.1016/j.cmet.2014.03.010 PMID:24746806 PMCID:PMC4067979
  • Laybutt DR, Sharma A, Sgroi DC, et al. Genetic regulation of metabolic pathways in beta-cells disrupted by hyperglycemia. J Biol Chem. 2002; 277(13):10912-21. https://doi.org/10.1074/jbc.M111751200 PMID:11782487
  • Jonas JC, Sharma A, Hasenkamp W, et al. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J Biol Chem. 1999; 274(20):14112-21. https://doi.org/10.1074/jbc.274.20.14112 PMID:10318828
  • Dahan T, Ziv O, Horwitz E, et al. Pancreatic β-Cells Express the Fetal Islet Hormone Gastrin in Rodent and Human Diabetes. Diabetes. 2017; 66(2):426-36. https://doi.org/10.2337/db16-0641 PMID:27864307 PMCID:PMC5248995
  • Cinti F, Bouchi R, Kim-Muller JY, et al. Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. J Clin Endocrinol Metab. 2016; 101(3):1044-54. https://doi.org/10.1210/jc.2015-2860 PMID:26713822 PMCID:PMC4803182
  • Tchkonia T, Zhu Y, van Deursen J, et al. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013; 123(3):966-72. https://doi.org/10.1172/JCI64098 PMID:23454759 PMCID:PMC3582125
  • He S, Sharpless NE. Senescence in Health and Disease. Cell. 2017; 169(6):1000-11. https://doi.org/10.1016/j.cell.2017.05.015 PMID:28575665 PMCID:PMC5643029
  • Casteels T, Zhang Y, Frogne T, et al. An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol Metab. 2021; 54:101329. https://doi.org/10.1016/j.molmet.2021.101329 PMID:34454092 PMCID:PMC8476777
  • Oppenlander L, Palit S, Stemmer K, et al. Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Mol Metab. 2021; 54:101330. https://doi.org/10.1016/j.molmet.2021.101330 PMID:34500108 PMCID:PMC8487975
  • Jain, C., Ansarullah, Bilekova, S. et al. Targeting pancreatic β cells for diabetes treatment. Nat Metab. 2022; 4:1097-1108. https://doi.org/10.1038/s42255-022-00618-5 PMID:36131204

Abstract Views: 134

PDF Views: 0




  • Pancreatic β-Cell Dysfunction in Diabetes

Abstract Views: 134  |  PDF Views: 0

Authors

Ansarullah
The Jackson Laboratory, Bar Harbor, 04609, Maine, United States
A. V. Ramachandran
School of Science, Navrachana University, Vadodara 391410, Gujarat, India

Abstract


The decline in functional β-cell mass and β-cell dysfunction causes diabetes. Pancreatic β-cells play a fundamental role in controlling the glucose milieu, and β-cells of diabetic patients poorly respond to glucose. The mechanism underlying the pathology of impaired β-cell function is a unique challenge. This concise review summarizes the identity of β-cells during the progression and established diabetes. Understanding β-cell heterogeneity and the dynamic functional state during health and disease progression would be important for designing diabetes therapeutics to restore the β-cell mass by cellreplacement or regeneration approaches.

Keywords


β-Cell Dedifferentiation, β-Cell Dysfunction, β-Cell Identity.

References





DOI: https://doi.org/10.18519/jer%2F2022%2Fv26%2F222218