Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Review on the Dietary Requirements of Trace Minerals in Freshwater Fish


Affiliations
1 Aquaculture Laboratory, Department of Zoology, University of Kalyani, West Bengal, India
     

   Subscribe/Renew Journal


Trace minerals are essential for growth and immunity in animals including fish. It’s presence either in excess or low quantity in feed, leads to dwarfism, mortality, mineral specific diseases and toxicity. Hence, knowledge about the most favorable dietary requirement of trace minerals by fish will help in formulation of a nutritionally well balanced feed and maximize the production. Several trace minerals have been reported as essential for development in fish, but only Zn, Se, Fe, I, Mn, Cu, Co, and Cr have been studied in detail. Besides, information on trace mineral necessity and effects on physiology of various freshwater fishes are limited. All these aspects of trace mineral are discussed in the review, emphasizing on its growth and immune-modulation in freshwater fish.

Keywords

Trace Minerals, Bioavailability, Dietary Requirements, Freshwater Fish, Immune-Modulation.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Abeer, A., Eman, Z., and Youssef, E. 2015. Dietary supplementation of Nile tilapia (Oreochromis niloticus) with betaine, chromium picolinate and a combination: Effects on growth performance, hematological and biochemical parameters. Ann. Vet. and Anim. Sci., 4: 98-108.
  • Adel, A. and Khara, H., 2016. The effects of different dietary vitamin C and iron levels on the growth, hematological and immunological parameters of rainbow trout Oncorhynchus mykiss fingerlings. Iran. J. Fish. Sci., 15: 886-897.
  • Ahmed, A.R., Jha, A.N., and Davies, S.J. 2012a. The efficacy of chromium as a growth enhancer for mirror carp (Cyprinus carpio L): an integrated study using biochemical, genetic, and histological responses. Biol. Trace Elem. Res. 148: 187-197.
  • Ahmed, A.R., Jha, A.N., and Davies, S.J., 2012b. The effect of dietary organic chromium on specific growth rate, tissue chromium concentrations, enzyme activities and histology in common carp, Cyprinus carpio L. Biol. Trace Elem. Res., 149: 362-370.
  • Ahmed, A.R., Moody, A.J., Fisher, A., and Davies, S.J., 2013. Growth performance and starch utilization in common carp (Cyprinus carpio L.) in response to dietary chromium chloride supplementation. J. Trace Elem. Med. Bio., 27: 45-51.
  • Akter, N., Alam, M.J., Jewel, M.A.S., Ayenuddin, M., Haque, S.K. and Akter, S., 2018. Evaluation of dietary metallic iron nanoparticles as feed additive for growth and physiology of Bagridae catfish Clarias batrachus (Linnaeus, 1758). Int. J. Fish. Aquat. Stud., 6(3): 371-377.
  • Al-Ghanem, K.A. 2011. Effect of cobalt-supplemented diets on bioaccumulation, digestive enzyme activities and growth of Cyprinus carpio. Toxicol. Environ. Chem., 93: 985-995.
  • Anjugam, M., Vaseeharan, B., Iswarya, A., Gobi, N., Divya, M., Thangaraj, M.P. and Elumalai, P., 2018. Effect of β-1, 3 glucan binding protein based zinc oxide nanoparticles supplemented diet on immune response and disease resistance in Oreochromis mossambicus against Aeromonas hydrophila. Fish shellfish immunol., 76: 247-259.
  • Apines M. J., Satoh, S., Kiron, V., Watanabe, T., Nasu, N., and Fujita, S. 2001. Bioavailability of amino acids chelated and glass embedded zinc to rainbow trout, Oncorhynchus mykiss, fingerlings. Aquac. Nutr., 7: 221-228.
  • Apines-Amar, M. J. S., Satoh, S., Caipang, C. M. A., Kiron, V., Watanabe, T., and Aoki, T. 2004. Amino acid-chelate: a better source of Zn, Mn and Cu for rainbow trout, Oncorhynchus mykiss. Aquaculture, 240: 345-358.
  • Barros, M. M., Lim, C. and Klesius, P. H. 2002. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus punctatus) to Edwardsiella ictaluri challenge. Aquaculture, 207: 263-279.
  • Beaver, L. M., Nkrumah-Elie, Y. M., Truong, L., Barton, C. L., Knecht, A. L., Gonnerman, G. D., Wong, C. P., Tanguay, R. L. and Ho, E., 2017. Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. J. Nutr. Biochem., 43: 78-87.
  • Behera, T., Swain, P., Rangacharulu, P.V. and Samanta, M. 2014. Nano-Fe as feedadditive improves the hematological and immunological parameters of fish, Labeo rohita H. Appl. Nanosci., 4: 687-694.
  • Bell, J. G., Cowey, C. B., Adron, J. W. and Shanks, A. M., 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). Br. J. Nutr., 53: 149-157.
  • Bell, J. G., Pirie, B. J. S., Adron, J. W. and Cowey, C. B., 1986. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11. 1.9) activity and tissue pathology in rainbow trout (Salmo gairdneri). Br. J. Nutr., 55: 305-311.
  • Buentello, J. A., Goff, J. B. and Gatlin III, D. M., 2009.Dietary zinc requirement of hybrid striped bass, Morone chrysops × Morone saxatilis, and bioavailability of two chemically different zinc compounds. J. World Aquac. Soc., 40: 687-694.
  • Carriquiriborde, P. R., Handy, R. D. and Davies, S. J. 2004. Physiological modulation of iron metabolism in rainbow trout (Oncorhynchus mykiss) fed low and high iron diets. J. Exp. Biol., 207: 75-86.
  • Chanda, S., Samanta, A., Paul, B. N., Ghosh, K. and Giri, S. S., 2017. Effect of dietary iron level on growth performance and enzyme activity in Rohu (Labeo rohita Hamilton) fingerlings. Indian J. Anim. Nutr., 34: 224-228.
  • Chupani, L., Zusková, E., Niksirat, H., Panáček, A., Lünsmann, V., Haange, S.B., von Bergen, M. and Jehmlich, N. 2017. Effects of chronic dietary exposure of zinc oxide nanoparticles on the serum protein profile of juvenile common carp (Cyprinuscarpio L.). Sci. Total Environ., 579: 1504-1511.
  • Chupani, L., Niksirat, H., Velíšek, J., Stará, A., Hradilová, Š., Kolařík, J., Panáček, A. and Zusková, E. 2018. Chronic dietary toxicity of zinc oxide nanoparticles in common carp (Cyprinus carpio L.): Tissue accumulation and physiological responses. Ecotoxicol. and Environ. Saf., 147: 110-116.
  • Clearwater, S. J., Farag, A. M. and Meyer, J. S. 2002. Bioavailability and toxicity of dietborne copper and zinc to fish. Comp. Biochem. Physiol. Part C : Toxicol. Pharmacol., 132: 269-313.
  • Connolly, M., Fernández, M., Conde, E., Torrent, F., Navas, J. M. and FernándezCruz, M. L. 2016. Tissue distribution of zinc and subtle oxidative stress effects after dietary administration of ZnO nanoparticles to rainbow trout. Sci. Total Environ., 551: 334-343.
  • Cotter, P. A., Craig, S. R. and McLean, E. 2008. Hyperaccumulation of selenium in hybrid striped bass: a functional food for aquaculture? Aquac. Nutr., 14: 215-222.
  • Craig, M. P., Desai, M. B., Olukalns, K. E., Afton, S. E., Caruso, J. A. and Hove, J. R. 2012. Unsupplemented Artemia Diet Results in Reduced Growth and Jaw Dysmorphogenesis in Zebrafish. Aquaculture, 1: 35-42.
  • Das, A., Prakash, C., Suresh Babu, P. P., Sharma, A., Chanu, T. I., Paul, L. and Verma, A. K. 2014. Dietary Iron Requirement of Goldfish (Carassius auratus) Fry. Isr. J. Aquac., 66: 1-8.
  • e Sá, M. V., Pezzato, L. E., Barros., M. and Magalhaes Padilha, P. 2004. Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture, 238: 385-401.
  • e Sá, M. V., Pezzato, L. E., Barros., M. and Magalhaes Padilha, P. 2005. Relative bioavailability of zinc in supplemental inorganic and organic sources for Nile tilapia Oreochromis niloticus fingerlings. Aquac. Nutr., 11: 273-281.
  • Eid, A. E. and Ghonim, S. I. 1994. Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture, 119: 259-264.
  • Faiz, H., Zuberi, A., Nazir, S., Rauf, M. and Younus, N. 2015. Zinc oxide, zinc sulfate and zinc oxide nanoparticles as source of dietary zinc: Comparative effects on growth and hematological indices of juvenile grass carp (Ctenopharyngodon idella). Int. J. Agric. Biol., 17(3): 568-574.
  • Feng, L., Tan, L. N., Liu, Y., Jiang, J., Jiang, W. D., Hu, K., LI, S. H. and Zhou, X. Q. 2011. Influence of dietary zinc on lipid peroxidation, protein oxidation and antioxidant defence of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr., 17(4): 875-e882.
  • Fontagné-Dicharry, S., Godin, S., Liu, H., Prabhu, P. A. J., Bouyssiere, B., Bueno, M., Tacon, P., Médale, F. and Kaushik, S. J. 2015. Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry. Br. J. Nutr., 113: 1876-1887.
  • Gammanpila, M., Age, A. Y. and Bart, A. N. 2007. Evaluation of the effects of dietary vitamin C, E and Zinc supplementation on reproductive performance of Nile tilapia (Oreochromis niloticus). Sri Lanka J. Aquat. Sci., 12: 39-60.
  • Gatlin, D. M. and Wilson, R. P. 1983. Dietary zinc requirement of fingerling channel catfish. J. Nutr., 113: 630-635.
  • Gatlin, D. M. and Wilson, R. P. 1984a. Dietary selenium requirement of fingerling channel catfish. J. Nutr., 114: 627.
  • Gatlin, D. M. and Wilson, R. P. 1984b. Studies on the manganese requirement of fingerling channel catfish. Aquaculture 41: 85-92.
  • Gatlin, D. M. and Wilson, R. P. 1984c. Zinc supplementation of practical channel catfish diets. Aquaculture, 41: 31-36.
  • Gatlin, D. M. and Wilson, R. P. 1986a. Characterization of iron deficiency and the dietary iron requirement of fingerling channel catfish. Aquaculture, 52: 191-198.
  • Gatlin, D. M. and Wilson, R. P. 1986b. Dietary copper requirement of fingerling channel catfish. Aquaculture, 54: 277-285.
  • Gatta, P. P., Thompson, K. D., Smullen, R., Piva, A., Testi, S. and Adams, A. 2001. Dietary organic chromium supplementation and its effect on the immune response of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol., 11: 371-382.
  • Gensic, M., Wissing, P. T., Keefe, T. R., and Mustafa, A. 2004. Effects of iodized feed on stress modulation in steelhead trout, Oncorhynchus mykiss (Walbaum). Aquac. Res., 35: 1117-1121.
  • Giri, A. K., Sahu, N. P., Saharan, N. and Dash, G. 2014. Effect of dietary supplementation of chromium on growth and biochemical parameters of Labeo rohita (Hamilton) fingerlings. Indian J. Fish., 61: 73-81.
  • Glover, C. N. and Hogstrand, C. 2003. Effects of dissolved metals and other hydrominerals on in vivo intestinal zinc uptake in freshwater rainbow trout. Aquat. Toxicol., 62: 281-293.
  • Gupta, A. K. and Soni, M. K. 1998. Dietary requirement of zinc for the fingerlings of Cirrhinus mrigala. Geobios 25: 261-265.
  • Guo, Y. L., Jiang, W. D., Wu, P., Liu, Y., Zhou, X. Q., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A. and Feng, L. 2017. The decreased growth performance and impaired immune function and structural integrity by dietary iron deficiency or excess are associated with TOR, NF-κB, p38MAPK, Nrf2 and MLCK signaling in head kidney, spleen and skin of grass carp (Ctenopharyngodon idella). Fish Shellfish immunol., 65: 145-168.
  • Guo, Y. L., Wu, P., Jiang, W. D., Liu, Y., Kuang, S. Y., Jiang, J., Tang, L., Tang, W. N., Zhang, Y. A., Zhou, X. Q. and Feng, L. 2018. The impaired immune function and structural integrity by dietary iron deficiency or excess in gill of fish after infection with Flavobacterium columnare: Regulation of NF-κB, TOR, JNK, p38MAPK, Nrf2 and MLCK signalling. Fish Shellfish immunol., 74: 593-608.
  • Han, D., Xie, S., Liu, M., Xiao, X., Liu, H., Zhu, X. and Yang, Y. 2011. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio). Aquac. Nutr., 17(3): e741-e749.
  • Hasan, M. R. 2001. Nutrition and feeding for sustainable aquaculture development in the third millennium. In Aquaculture in the Third Millennium. Technical Proceedings of the Conference on Aquaculture in the Third Millennium (pp. 193-219).
  • Hauser-Davis, R. A., Silva, J. A. N., Rocha, R. C., Saint’ Pierre, T., Ziolli, R. L. and Arruda, M. A. Z. 2016. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio). J. Trace Elem. Med. Bio., 33: 68-72.
  • Hertz, Y., Madar, Z., Hepher, B. and Gertler, A. 1989. Glucose metabolism in the common carp (Cyprinus carpio L.): the effects of cobalt and chromium. Aquaculture, 76(3-4): 255-267.
  • Hidalgo, M. C., Exposito, A., Palma, J. M. and de la Higuera, M. 2002. Oxidative stress generated by dietary Zn-deficiency: studies in rainbow trout (Oncorhynchus mykiss). Int. J. Biochem. Cell Biol., 34(2): 183-193.
  • Hilton, J. W., Hodson, P. V. and Slinger, S. J. 1980. The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J. Nutr., 110(12): 2527-2535.
  • Hoyle, I., Shaw, B. J. and Handy, R. D. 2007. Dietary copper exposure in the African walking catfish, Clarias gariepinus: Transient osmoregulatory disturbances and oxidative stress. Aquat. Toxicol., 83(1): 62-72.
  • Hu, C. H., Xiao, K., Jiao, L. F. and Song, J. 2014. Effects of zinc oxide supported on zeolite on growth performance, intestinal barrier function and digestive enzyme activities of Nile tilapia. Aquac. Nutr., 20(5): 486-493.
  • Huang, F., Jiang, M., Wen, H., Wu, F., Liu, W., Tian, J. and Yang, C. 2015. Dietary zinc requirement of adult Nile tilapia (Oreochromis niloticus) fed semi-purified diets, and effects on tissue mineral composition and antioxidant responses. Aquaculture, 439: 53-59.
  • Hunt, A. O., Berkoz, M., Ozkan, F., Yalin, S., Ercen, Z., Erdogan, E. and Gunduz, S. G. 2011. Effects of organic selenium on growth, muscle composition, and antioxidant system in rainbow trout. Isr. J. Aquac., 63(562): 10.
  • Inoue, M., Satoh, S., Maita, M., Kiron, V. and Okamoto, N. 1998. Recovery from derangement of natural killer-like activity of leucocytes due to Zn or Mn deficiency in rainbow trout, Oncorhynchus mykiss (Walbaum), by the oral administration of these elements. J. Fish. Dis., 21: 233-236.
  • Ishac, M. M. and Dollar, A. M. 1968. Studies on manganese uptake in Tilapia mossambica and Salmo gairdnerii. Hydrobiologia, 31(3-4): 572-584.
  • Iswarya, A., Vaseeharan, B., Anjugam, M., Gobi, N., Divya, M. and Faggio, C. 2018. β-1, 3 glucan binding protein based selenium nanowire enhances the immune status of Cyprinus carpio and protection against Aeromonas hydrophila infection. Fish Shellfish Immunol., 83: 61-75.
  • Jaramillo Jr, F., Peng, L. I. and Gatlin III, D. M. 2009. Selenium nutrition of hybrid striped bass (Morone chrysops× M. saxatilis) bioavailability, toxicity and interaction with vitamin E. Aquac. Nutr., 15(2): 160-165.
  • Jiang, M., Huang, F., Wen, H., Wang, W. M., Wu, F., Liu, W., Tian, J. and Yang, C.G. 2015. Effects of dietary zinc on growth, serum biochemical indexes and antioxidant responses of juvenile blunt snout bream, Megalobrama amblycephala. J. Fish. Sci. China, 22: 1167-1176.
  • Jiang, M., Wu, F., Huang, F., Wen, H., Liu, W., Tian, J., Yang, C. and Wang, W. 2016. Effects of dietary Zn on growth performance, antioxidant responses, and sperm motility of adult blunt snout bream, Megalobrama amblycephala. Aquaculture, 464: 121-128.
  • Kamunde, C. N., Grosell, M., Lott, J. N. and Wood, C. M. 2001. Copper metabolism and gut morphology in rainbow trout (Oncorhynchus mykiss) during chronic sublethal dietary copper exposure. Can. J. Fish Aquat. Sci., 58(2): 293-305.
  • Kawatsu, H. 1972. Studies on the anemia of fish-V. Dietary iron deficient anemia in brook trout, Salvelinus fontinalis. Bull. Freshwater Fish. Res. Lab., 22: 59-67.
  • Ketola, H. G. 1979. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J. Nutr., 109(6): 965-969.
  • Khan, K. U., Zuberi, A., Nazir, S., Fernandes, J. B. K., Jamil, Z. and Sarwar, H. 2016. Effects of dietary selenium nanoparticles on physiological and biochemical aspects of juvenile Tor putitora. Turk. J. Zool., 40(5): 704-712.
  • Knox, D., Cowey, C. B. and Adron, J. W. 1981. The effect of low dietary manganese intake on rainbow trout (Salmo gairdneri). Br. J. Nutr., 46(3): 495-501.
  • Kouba, A., Velíšek, J., Stará, A., Masojídek, J. and Kozák, P. 2014. Supplementation with sodium selenite and selenium-enriched microalgae biomass show varying effects on blood enzymes activities, antioxidant response, and accumulation in common barbel (Barbus barbus). Biomed. Res. Int., pp. 1-8.
  • Kucukbay, Z., Yazlak, H., Sahin, N., Tuzcu, M., Cakmak, M. N., Gurdogan, F., Juturu, V. and Sahin, K. 2006. Zinc picolinate supplementation decreases oxidative stress in rainbow trout (Oncorhynchus mykiss). Aquaculture, 257(1-4): 465-469.
  • Küçükbay, F. Z., Yazlak, H., Karaca, I., Sahin, N., Tuzcu, M., Cakmak, M.N. and Sahin, K. 2009. The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquac. Nutr., 15(6): 569-576.
  • Kumar, N., Krishnani, K. K., Kumar, P. and Singh, N. P. 2017. Zinc nanoparticles potentiates thermal tolerance and cellular stress protection of Pangasius hypophthalmus reared under multiple stressors. J. Therm. Biol., 70: 61-68.
  • Kumar, N., Krishnani, K. K., Gupta, S. K., Sharma, R., Baitha, R., Singh, D. K. and Singh, N. P. 2018. Immuno-protective role of biologically synthesized dietary selenium nanoparticles against multiple stressors in Pangasinodon hypophthalmus. Fish Shellfish Immunol., 78: 289-298.
  • Li, M. H. and Robinson, E. H. 1996. Comparison of chelated zinc and zinc sulfate as zinc sources for growth and bone mineralization of channel catfish (Ictalurus punctatus) fed practical diets. Aquaculture, 146(3-4): 237-243.
  • Li, J. S., Li, J. L. and Wu, T. T. 2007. The effects of copper, iron and zinc on digestive enzyme activity in the hybrid tilapia Oreochromis niloticus (L.)× Oreochromis aureus (Steindachner). J. Fish Biol., 71(6): 1788-1798.
  • Li, M. R. and Huang, C. H. 2016. Effect of dietary zinc level on growth, enzyme activity and body trace elements of hybrid tilapia, Oreochromis niloticus× O. aureus, fed soya bean meal-based diets. Aquac. Nutr., 22(6): 1320-1327.
  • Liang, J. J., Yang, H. J., Liu, Y. J., Tian, L. X. and Liang, G. Y. 2012. Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquac. Nutr., 18(4): 380-387.
  • Lim, C., Sealey, W. M. and Klesius, P. H. 1996. Iron methionine and iron sulfate as sources of dietary iron for channel catfish Ictalurus punctatus. J. World Aquac. Soc., 27(3): 290-296.
  • Lim, C. and Klesius, P. H. 1997. Responses of channel catfish (Ictalurus punctatus) fed iron-deficient and replete diets to Edwardsiella ictaluri challenge. Aquaculture, 157(1-2): 83-93.
  • Lin, Y. H., Lin, S. M. and Shiau, S. Y. 2008a. Dietary zinc requirements of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. J. Fish. Soc. Taiwan, 35(2): 117-125.
  • Lin, Y. H., Lin, S. M. and Shiau, S. Y. 2008b. Dietary manganese requirements of juvenile tilapia, Oreochromis niloticus × O. aureus. Aquaculture, 284: 207-210.
  • Ling, J., Feng, L., Liu, Y., Jiang, J., Jiang, W. D., Hu, K., Li, S. H. and Zhou, X. Q. 2010. Effect of dietary iron levels on growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac. Nutr., 16(6): 616-624.
  • Liu, T., Wen, H., Jiang, M., Yuan, D., Gao, P., Zhao, Y., Wu, F. and Liu, W. 2010. Effect of dietary chromium picolinate on growth performance and blood parameters in grass carp fingerling, Ctenopharyngodon idellus. Fish Physiol. Biochem., 36(3): 565-572.
  • Liu, H., Ye, Y., Cai, C., Wu, T., Chen, K. and Pu, Q. 2014. Dietary Zn requirement of Megalobrama amblycephala. J. Fish. China, 38(9): 1522-1529.
  • Luo, Z., Tan, X. Y., Zheng, J. L., Chen, Q. L. and Liu, C. X. 2011. Quantitative dietary zinc requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on hepatic intermediary metabolism and antioxidant responses. Aquaculture, 319(1-2): 150-155.
  • Luo, Z., Zou, G. Y., Gao, Y., Ye, H. M., Xi, W. Q. and Liu, X. 2017. Effect of dietary iron (Fe) levels on growth performance, hepatic lipid metabolism and antioxidant responses in juvenile yellow catfish Pelteobagrus fulvidraco. Aquac. Nutr., 23(6): 1475-1482.
  • Magzoub, M. B., Al-Batshan, H. A., Hussein, M. F., Al-Mufarrej, S. I. and Al-Saiady, M. Y. 2009. The effect of source and level of dietary chromium supplementation on humoral antibody response and blood chemical parameters in hybrid tilapia fish (Oreochromis niloticus× O. aureus). Res. J. Biol. Sci., 4(7): 821-827.
  • Marine, D. 1914. Further observations and experiments on goitre (so-called thyroid carcinoma) in brook trout (Salvelinus fontinalis): III. Its prevention and cure. J. Exp. Med. 19: 70-88.
  • McClain, W. R. and Gatlin III, D. M. 1988. Dietary zinc requirement of Oreochromis aureus and effects of dietary calcium and phytate on zinc bioavailability. J. World Aquac. Soc., 19(3): 103-108.
  • McPhee, D. L. and Janz, D. M. 2014. Dietary selenomethionine exposure alters swimming performance, metabolic capacity and energy homeostasis in juvenile fathead minnow. Aquat. Toxicol., 155: 91-100.
  • Mehrim, A. I. 2014. Physiological, biochemical and histometric responses of Nile tilapia (Oreochromis niloticus L.) by dietary organic chromium (chromium picolinate) supplementation. J. Adv. Res., 5(3): 303-310.
  • Mukherjee, S., and Kaviraj, A. 2009. Evaluation of growth and bioaccumulation of cobalt in different tissues of common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae), fed cobalt-supplemented diets. Acta Ichthyol. Piscat., 39(2): 87-93.
  • Mukherjee, S. and Kaviraj, A. 2011. Bioaccumulation of cobalt, digestive enzyme activities, and growth of freshwater catfish, Heteropneustes fossilis (Bloch), fed cobalt-supplemented diets. Toxicol. Environ. Chem., 93(3): 575-584.
  • Nose, T. and Arai, S. 1979. Recent advances in studies on mineral nutrition of fish in Japan. In: T. V. R. Pillay and W. A. Dill, (eds.). Advances in Aquaculture, pp. 584-590. Fishing News, Farnam, England.
  • Ogino, O. and Yang, G. Y. 1978. Requirement of rainbow trout for dietary zinc. Bull. Japan Soc. Sci. Fish, 44: 1015-1018.
  • Ogino, O., and Yang, G. Y. 1979. Requirement of carp for dietary zinc. Bull. Japan Soc. Sci. Fish., 45: 967-969.
  • Ogino, O. and Yang, G. Y. 1980. Requirements of carp and rainbow trout for dietary manganese and copper. Nippon Suisan Gakk., 46: 455-458.
  • Pacitti, D., Lawan, M. M., Feldmann, J., Sweetman, J., Wang, T., Martin, S. A. M. and Secombes, C. J. 2016. Impact of selenium supplementation on fish antiviral responses: a whole transcriptomic analysis in rainbow trout (Oncorhynchus mykiss) fed supranutritional levels of Sel-Plex®. BMC genomics, 17(1): 116.
  • Pan, L., Zhu, X., Xie, S., Lei, W., Han, D., and Yang, Y. 2008. Effects of dietary manganese on growth and tissue manganese concentrations of juvenile gibel carp, Carassius auratus gibelio. Aquac. Nutr., 14: 459-463.
  • Pan, L., Xie, S., Zhu, X., Lei, W., Han, D., and Yang, Y. 2009. The effect of different dietary iron levels on growth and hepatic iron concentration in juvenile gibel carp (Carassius auratus gibelio). J. Appl. Ichthyol., 25: 428-431.
  • Paripatananont, T. and Lovell, R. T. 1995a. Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture, 133: 73-82.
  • Paripatananont, T. and Lovell, R. T. 1995b. Responses of Channel Catfish Fed Organic and Inorganic Sources of Zinc to Edwardsiella ictaluri Challenge. J. Aquat. Anim. Health, 7(2): 147-154.
  • Paripatananont, T. and Lovell, R. T. 1997. Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus diets. J. World Aquac. Soc., 28: 62-67.
  • Park, C.W. and Shimizu, C. 1988. Quantitative Requirements of Copper and Manganese in Formulated Diets and Its Interrelation with Other Minerals in Young Eel. J. Aquac., 1(2): 109-119.
  • Park, C. W. and Shimizu, C. 1989. Suitable Level of Zinc Supplementation to the Formulated Diets in Young Eel. Nippon Suisan Gakk., 55(12): 2137-2141.
  • Pedrero, Z., Murillo, S., Cámara, C., Schram, E., Luten, J. B., Feldmann, I., Jakubowski, N. and Madrid, Y. 2011. Selenium speciation in different organs of African catfish (Clarias gariepinus) enriched through a selenium-enriched garlic based diet. J. Anal. At. Spectrom., 26(1): 116-125.
  • Penglase, S., Hamre, K., Rasinger, J. D. and Ellingsen, S. 2014. Selenium status affects selenoprotein expression, reproduction, and F 1 generation locomotor activity in zebrafish (Danio rerio). Br. J. Nutr., 111(11): 1918-1931.
  • Pires, K. A., dos Santos, D. C. C., Graca, D. S., Melo, M. M., Barbosa. F. A., and Soto-Blanco, B. 2015. Effects of two sources of chromium on performance, blood and liver lipid levels in nile tilapia (Oreochromis niloticus). Acta Sci. Vet., 43: 1302.
  • Prabhu, P. A. J., Schrama, J. W. and Kaushik, S. J. 2016. Mineral requirements of fish: a systematic review. Rev. Aquacult., 8: 172-219.
  • Rakhmawati, R., Suprayudi, M. A., Setiawati, M., Widanarni, W., Junior, M. Z. and Jusadi, D. 2018. Bioefficacy of dietary chromium picolinate and chromium yeast on growth performance and blood biochemical in Red Tilapia, Oreochromis niloticus (Linnaeus). Aquac. Res., 49(2): 839-846.
  • Ren, M., Mokrani, A., Liang, H., Ji, K., Xie, J., Ge, X. and Liu, B. 2018. Dietary Chromium Picolinate Supplementation Affects Growth, Whole-Body Composition, and Gene Expression Related to Glucose Metabolism and Lipogenesis in Juvenile Blunt Snout Bream, Megalobrama amblycephala. Biol. Trace Elem. Res., 185(1): 1-11.
  • Ribeiro, A. R., Gonçalves, A., Bandarra, N., Nunes, M. L., Dinis, M. T., Dias, J. and Rema, P. 2017. Natural fortification of trout with dietary macroalgae and selenised-yeast increases the nutritional contribution in iodine and selenium. Food Res. Int., 99: 1103-1109.
  • Rider, S. A., Davies, S. J., Jha, A. N., Clough, R. and Sweetman, J. W. 2010. Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. J. Anim. Physiol. Anim. Nutr., 94: 99-110.
  • Roberto, V. P., Martins, G., Pereira, A., Rodrigues, S., Grenha, A., Pinto, W., Cancela, M. L., Dias, J. and Gavaia, P. J. 2018. Insights from dietary supplementation with zinc and strontium on the skeleton of zebrafish, Daniorerio (Hamilton, 1822) larvae: From morphological analysis to osteogenic markers. J. Appl. Ichthyol., 34(2): 512-523.
  • Saffari, S., Keyvanshokooh, S., Zakeri, M., Johari, S. A. and Pasha Zanoosi, H. 2017. Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac. Nutr., 23: 611-617.
  • Sakamoto, S. and Yone, Y. 1978. Iron deficiency symptoms of carp. Bull. Japan Soc. Sci. Fish, 44: 1157-1160.
  • Sapkale, P. H. and Singh, R. K. 2011. Dietary zinc and cobalt requirements of fry of seabass (Latescalcarifer) and catfish (Clarias batrachus). Isr. J. Aquac., 63: 613-619.
  • Satoh, S., Yamamoto, H., Takeuchi, T. and Watanabe, T. 1983a. Effects on growth and mineral composition of rainbow trout on deletion of trace elements or magnesium from fish meal diet. Nippon Suisan Gakk., 49: 425-429.
  • Satoh, S., Yamamoto, H., Takeuchi, T. and Watanabe, T. 1983b. Effects on growth and mineral composition of carp on deletion of trace elements or magnesium from fish meal diet. Nippon Suisan Gakk., 49: 431-43s.
  • Satoh, S., Takeuchi, T. and Watanabe, T. 1987a. Availability to rainbow trout of zinc in white fish meal and of various zinc compounds. Nippon Suisan Gakk., 53: 595-599.
  • Satoh, S., Takeuchi, T. and Watanabe, T. 1987b. Availability to carp of manganese in white fish meal and of various manganese compounds. Nippon Suisan Gakk., 53: 825-832.
  • Satoh, S., Takeuchi, T. and Watanabe, T. 1987c. Effect of deletion of several trace elements from a mineral mixture in fish meal diets on mineral composition of gonads in rainbow trout and carp. Nippon Suisan Gakk., 53: 281-286.
  • Satoh, S., Izume, K., Takeuchi, T. and Watanabe, T. 1989. Mineral Nutrition in Fish-XXIII. Availability to carp of Manganese contained in various types of fish meals. Nippon Suisan Gakk., 55(2): 313-319.
  • Satoh, S., Izume, K., Takeuchi, T. and Watanabe, T. 1992. Mineral Nutrition in FishXXV. Effect of Supplemental Tricalcium Phosphate on Zinc and Manganese Availability to Common Carp. Nippon Suisan Gakk., 58(3): 539-545.
  • Satoh, S., Apines, M. J., Tsukioka, T., Kiron, V., Watanabe, T., Fujita, S. 2001. Bioavailability of amino acid-chelated and glassembedded manganese to rainbow trout, Oncorhynchus mykiss (Walbaum), fingerlings. Aquac. Res., 32: 18-25.
  • Schram, E., Pedrero, Z., Cámara, C., Van Der Heul, J. W. and Luten, J. B. 2008. Enrichment of African catfish with functional selenium originating from garlic. Aquac. Res., 39: 850-860.
  • Sealey, W. M., Lim, C. and Klesius, P. H. 1997. Influence of dietarylevel of iron from iron methionine and iron sulfate onimmune response and resistance of channel catfish to Edwardsiella ictaluri. J. World Aquac. Soc., 28: 142-149.
  • Selcuk, Z., Tiril, S. U., Alagil, F., Belen, V., Salman, M., Cenesiz, S., Muglali, O.H. and Yagci, F. B. 2010. Effects of dietary L-carnitine and chromium picolinate supplementations on performance and some serum parameters in rainbow trout (Oncorhynchus mykiss). Aquac. Int., 18: 213-221.
  • Senadheera, S. D., Turchini, G. M., Thanuthong, T. and Francis, D. S. 2012. Effects of dietary iron supplementation on growth performance, fatty acid composition and fatty acid metabolism in rainbow trout (Oncorhynchus mykiss) fed vegetable oil based diets. Aquaculture, 342: 80-88.
  • Shao, X.P., Liu, W.B., Xu, W.N., Xia, W. and Jiang, Y.Y. 2010. Effects of dietary copper sources and levels on performance, copper status, plasma antioxidant activities and relative copper bioavailability in Carassius auratus gibelio. Aquaculture, 308(1-2): 60-65.
  • Shaw, B. J. and Handy, R. D., 2006. Dietary copper exposure and recovery in Nile tilapia, Oreochromis niloticus. Aquat. Toxicol., 76(2): 111-121.
  • Shiau, S. Y. and Chen, M. J. 1993. Carbohydrate utilization by tilapia (Oreochromis niloticus x Oreochromis aureus) as influenced by different chromium sources. J. Nutr., 123(10): 1747-1753.
  • Shiau, S. Y. and Shy, S. M. 1998. Dietary chromic oxide inclusion level required to maximize glucose utilization in hybrid tilapia, Oreochromis niloticus×O. aureus. Aquaculture, 161: 357-364.
  • Shiau, S. Y., and Ning, Y. C., 2003. Estimation of dietary copper requirements of juvenile tilapia, Oreochromis niloticus×O. aureus. Animal Sci., 77: 287-292.
  • Shiau, S. Y. and Su, L. W. 2003. Ferric citrate is half as effective as ferrous sulfate in meeting the iron requirement of juvenile tilapia, Oreochromis niloticus X O. aureus. J. Nutr., 133: 483-488.
  • Shim, K. F. and Ong, S. I. 1992. Iron requirement of the guppy (Poecilia reticulata Peters). J. Fish. Aquat. Sci., 6: 33-40.
  • Shim, K. and Lee, T. 1993. Zinc requirements of the guppy (Poecilia reticulata Peters). J. Aquac. Trop., 8: 81-90.
  • Singh, D. K., Kumar, M., Ranjan, A., Udit, U. K., Vimal, B., Nayak, B. B. and Gupta, S., 2017. Growth and nutrient utilization of Pangasianodon hypophthalmus (Sauvage, 1878) fed with graded level of Zinc. Int. J. Curr. Microbiol. Appl. Sci., 6(6): 671-683.
  • Song, Z. X., Jiang, W. D., Liu, Y., Wu, P., Jiang, J., Zhou, X. Q., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A. and Feng, L., 2017. Dietary zinc deficiency reduced growth performance, intestinal immune and physical barrier functions related to NF-κB, TOR, Nrf2, JNK and MLCK signaling pathway of young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol., 66: 497-523.
  • Tan, L. N., Feng, L., Liu, Y., Jiang, J., Jiang, W. D., Hu, K., Li, S. H. and Zhou, X. Q., 2011a. Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquac. Nutr., 17(3): 338-345.
  • Tan, X. Y., Luo, Z., Liu, X. and Xie, C. X. 2011b. Dietary copper requirement of juvenile yellow catfish Ptelobragus fulvidraco. Aquac. Nutr., 17: 170-176.
  • Tan, X. Y., Xie, P., Luo, Z., Lin, H. Z., Zhao, Y. H. and Xi, W. Q. 2012. Dietary manganese requirement of juvenile yellow catfish Pelteobagrus fulvidraco, and effects on whole body mineral composition and hepatic intermediary metabolism. Aquaculture, 326: 68-73.
  • Tang, Q. Q., Feng, L., Jiang, W. D., Liu, Y., Jiang, J., Li, S. H., Kuang, S. Y., Tang, L. and Zhou, X. Q. 2013. Effects of dietary copper on growth, digestive, and brush border enzyme activities and antioxidant defense of hepatopancreas and intestine for young grass carp (Ctenopharyngodon idella). Biol. Trace Elem. Res., 155(3): 370-380.
  • Tang, L., Huang, K., Xie, J., Yu, D., Sun, L., Huang, Q. and Bi, Y. 2017. Dietary copper affects antioxidant and immune activity in hybrid tilapia (Oreochromis niloticus × Oreochromis aureus). Aquac. Nutr., 23(5): 1003-1015.
  • Teh, S. J., Deng, X., Deng, D. F., Teh, F. C., Hung, S. S., Fan, T. W. M., Liu, J. and Higashi, R. M. 2004. Chronic effects of dietary selenium on juvenile sacramento splittail (Pogonichthys macrolepidotus). Environ. Sci. Technol., 38(22): 60856093.
  • Valente, L. M., Rema, P., Ferraro, V., Pintado, M., Sousa-Pinto, I., Cunha, L. M., Oliveira, M. B. and Araújo, M. 2015. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture, 446: 132-139.
  • Vincent, J. B., 1994. Relationship between glucose tolerance factor and low-molecularweight chromium-binding substance. J. Nutr., 124: 117-118.
  • Watanabe, T., Kiron, V. and Satoh, S. 1997. Trace minerals in fish nutrition. Aquaculture, 151(1-4): 185-207.
  • Wang, C. and Lovell, R. T. 1997. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture, 152(1-4): 223-234.
  • Wang, C., Lovell, R. T. and Klesius, P. H. 1997. Response to Edwardsiella ictaluri challenge by channel catfish fed organic and inorganic sources of selenium. J. Aquat. Anim. Health, 9: 172-179.
  • Wang, Y., Han, J., Li, W. and Xu, Z. 2007. Effect of different selenium source on growth performances, glutathione peroxidase activities, muscle composition and selenium concentration of allogynogenetic crucian carp (Carassius auratus gibelio). Anim. Feed Sci. Technol., 134(3-4): 243-251.
  • Wang, K. Y., Peng, C. Z., Huang, J. L., Huang, Y. D., Jin, M. C. and Geng, Y. 2013. The pathology of selenium deficiency in Cyprinus carpio L. J. fish Dis., 36(7): 609-615.
  • Wiseman, S., Thomas, J. K., Higley, E., Hursky, O., Pietrock, M., Raine, J. C., Giesy, J. P., Janz, D. M. and Hecker, M. 2011a. Chronic exposure to dietary selenomethionine increases gonadal steroidogenesis in female rainbow trout. Aquat. Toxicol., 105: 218-226.
  • Wiseman, S., Thomas, J. K., McPhee, L., Hursky, O., Raine, J. C., Pietrock, M., Giesy, J. P., Hecker, M. and Janz, D. M. 2011b. Attenuation of the cortisol response to stress in female rainbow trout chronically exposed to dietary selenomethionine. Aquat. Toxicol., 105: 643-651.
  • Wu, Y. P., Feng, L., Jiang, W. D., Liu, Y., Jiang, J., Li, S. H., Tang, L., Kuang, S. Y. and Zhou, X. Q. 2015. Influence of dietary zinc on muscle composition, flesh quality and muscle antioxidant status of young grass carp (Ctenopharyngodon idella Val.). Aquac. Res., 46: 2360-2373.
  • Zhao, H. X., Cao, J. M., Liu, X. H., Zhu, X., Chen, S. C., Lan, H. B. and Wang, A. L. 2011. Effect of supplemental dietary zinc sources on the growth and carbohydrate utilization of tilapia Smith 1840, Oreochromis niloticus × Oreochromis aureus. Aquac. Nutr., 17: 64-72.
  • Zhang, L., Feng, L., Jiang, W. D., Liu, Y., Jiang, J., Li, S. H., Tang, L., Kuang, S. Y. and Zhou, X. Q. 2016. The impaired flesh quality by iron deficiency and excess is associated with increasing oxidative damage and decreasing antioxidant capacity in the muscle of young grass carp (Ctenopharyngodon idellus). Aquac. Nutr., 22: 191-201.
  • Zheng, J. L., Luo, Z., Hu, W., Liu, C. X., Chen, Q. L., Zhu, Q. L. and Gong, Y. 2015. Different effects of dietary Zn deficiency and excess on lipid metabolism in yellow catfish Pelteobagrus fulvidraco. Aquaculture, 435: 10-17.
  • Zheng, L., Feng, L., Jiang, W. D., Wu, P., Tang, L., Kuang, S. Y., Zeng, Y. Y., Zhou, X. Q. and Liu, Y. 2018. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol, 77: 53-70.
  • Zhou, X., Wang, Y., Gu, Q. and Li, W. 2009. Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture, 291: 78-81.
  • Zhu, Y., Chen, Y., Liu, Y., Yang, H., Liang, G. and Tian, L. 2012. Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide. Aquac. Res., 43(11): 1660-1668.
  • Zhu, L., Han, D., Zhu, X., Yang, Y., Jin, J., Liu, H. and Xie, S. 2017. Dietary selenium requirement for on growing gibel carp (Carassius auratus gibelio var. CAS III). Aquac. Res., 48(6): 2841-2851.

Abstract Views: 511

PDF Views: 2




  • A Review on the Dietary Requirements of Trace Minerals in Freshwater Fish

Abstract Views: 511  |  PDF Views: 2

Authors

Puja Pati
Aquaculture Laboratory, Department of Zoology, University of Kalyani, West Bengal, India
Kausik Mondal
Aquaculture Laboratory, Department of Zoology, University of Kalyani, West Bengal, India

Abstract


Trace minerals are essential for growth and immunity in animals including fish. It’s presence either in excess or low quantity in feed, leads to dwarfism, mortality, mineral specific diseases and toxicity. Hence, knowledge about the most favorable dietary requirement of trace minerals by fish will help in formulation of a nutritionally well balanced feed and maximize the production. Several trace minerals have been reported as essential for development in fish, but only Zn, Se, Fe, I, Mn, Cu, Co, and Cr have been studied in detail. Besides, information on trace mineral necessity and effects on physiology of various freshwater fishes are limited. All these aspects of trace mineral are discussed in the review, emphasizing on its growth and immune-modulation in freshwater fish.

Keywords


Trace Minerals, Bioavailability, Dietary Requirements, Freshwater Fish, Immune-Modulation.

References