Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

NEED FOR INTEGRATION OF MORPHOTAXONOMY AND MOLECULAR SIGNATURE IN DETERMINATION OF INDIAN TERMITE TAXA (INSECTA: BLATTARIA)


Affiliations
1 Department of Zoology, The Institute of Integrated and Honors studies (IIHS), Kurukshetra University, Kurukshetra-136119, Haryana, India, India
2 Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata-700053, India, India
     

   Subscribe/Renew Journal


Termites are an important group of social insects and are considered as ‘ecosystem engineers’ for their role in organic decomposition, maintaining soil fertility, and hydrological parameters. They contribute large biomass in nature and often become pests. They have different reproductive and non-reproductive castes in a colony. Processes of morpho-taxonomical analyses for species determination are well developed, yet face questions as the insects have diagnostic traits limited to some castes only. These taxonomic limitations have a bearing on ecological and pest management studies. Molecular identification poses to minimize this problem of morpho-taxonomy. Mitochondrial genome or DNA barcoding serves as an additional tool to delineate species and ascertain their relationships. Hence, a classical species determination approach combined with molecular markers and barcoding techniques promises to resolve the existing taxonomic problems and controversies.

Keywords

Blattaria, Morphology, Molecular systematics, Mitochondrial markers, Nuclear markers.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Al-otaibi, N., Mashaly, A., Alajmi, R., Ahmed, A. and Ayaad, T. 2019. Genetic diversity of termites from Ta’if City, Saudi Arabia. J. Environ. Biol., 40(1): 29-35.
  • Austin, J. W., SzalanskI, A. L. and Messenger, M. T. 2004. Mitochondrial DNA variation and distribution of the subterranean termite genus Reticulitermes (Isoptera: Rhinotermitidae) in Arkansas and Louisiana. Fla. Entomol., 87(4): 473-480.
  • Austin, J. W., Szalanski, A. L., Messenger, M. T., McKern, J. A. and Gold, R. E. 2006. Genetic variation and phylogenetics of Reticulitermes (Isoptera: Rhinotermitidae) from the American great plains. Sociobiol., 48(2): 427-445.
  • Austin, J. W., Szalanski, A. L., Solorzano, C., Magnus, R. and Scheffrahn, R. H. 2012. Mitochondrial DNA genetic diversity of the drywood termites Incisitermes minor and I. snyderi (Isoptera: Kalotermitidae). Fla. Entomol., 95(1): 75-81.
  • Booth, W., Brent, C. S., Calleri, D. V., Rosengaus, R. B., Traniello, J. F. A. and Vargo, E. L. 2012. Population genetic structure and colony breeding system in dampwood termites (Zootermopsis angusticollis and Z. nevadensis nuttingi). Insect. soc., 59(1): 127-137.
  • Cameron, S. L., Lo, N., Bourguignon, T., Svenson, G. J. and Evans, T. A. 2012. A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Mol. Phylogenet. Evol., 65(1): 163-173.
  • Chhotani, O. B. 1997. The Fauna of India and the Adjacent Countries: Isoptera (Termites). Vol. II. Zoological Survey of India, Calcutta, pp., xx+ 801. De, S. and Bandyopadhyay, S. 2008. Molecular taxonomy: an approach based on molecular markers. Sci. Cult., 74: 397-496.
  • Donovan, S. E., Eggleton, P. and Bignell, D. E. 2008. Gut content analysis and a new feeding group classification of termites. Ecol. Entomol., 26(4): 356-366.
  • Garrick, R. C., Collins, B. D., Yi, R. N., Dyer, R. J. and Hyseni, C. 2015. Identification of Eastern United States Reticulitermes termite species via PCR-RFLP, assessed using training and test data. Insects, 6(2): 524-537.
  • Gentz, M. C., Rubinoff, D. and Grace, J. K. 2008. Phylogenetic analysis of subterranean termites (Coptotermes spp., Isoptera: Rhinotermitidae) indicates the origins of Hawaiian and North American invasions: potential implications for invasion biology. Proc. Hawaiian .Entomol. Soc., 40: 1-9.
  • Ghesini, S., Müller, G. and Marini, M. 2020. First record of the subterranean termite Reticulitermes grassei in Switzerland. Bull. Insectology, 73(1): 149-151.
  • Gillespie, J. J., Johnston, J. S., Cannone, J. J. and Gutell, R. R. 2006. Characteristics of the nuclear (18S, 5.8 S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol. Biol., 15(5): 657-686.
  • Grace, J. K. 2006. Termite trends worldwide. CWPA Proceedings, 27: 27-38. Canadian Wood Preservation Association.
  • Hausberger, B., Kimpel, D., van Neer, A. and Korb, J. 2011. Uncovering cryptic species diversity of a termite community in a West African savanna. Mol. Phylogenet. Evol., 61(3): 964-969.
  • Hebert, P. D. N. and Gregory, T. R. 2005. The promise of DNA barcoding for taxonomy. Syst. Biol., 54(5): 852-859.
  • Hebert, P. D. N., Ratnasingham, S. and De Waard, J. R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. B. (Suppl.), 270: 96-99.
  • Inward, D. J. G., Vogler, A. P. and Eggleton, P. 2007. A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Mol. Phylogenet. Ecol., 44(3): 953-967.
  • Jarman, S. N., Elliott, N. G., Nicol, S. and McMinn, A. 2000. Molecular phylogenetics of circumglobal Euphausia species (Euphausiacea: Crustacea). Can. J. Fish. Aquat. Sci., 57(Suppl. 3): 51-58.
  • Jenkins, T. M., Dean, R. E., Verkerk, R. and Forschler, B. T. 2001. Phylogenetic analyses of two mitochondrial genes and one nuclear intron region illuminate European subterranean termite (Isoptera: Rhinotermitidae) gene flow, taxonomy, and introduction dynamics. Mol. Phylogenet. Evol., 20(2): 286-293.
  • Jenkins, T. M., Jones, S. C., Lee, C.-Y., Forschler, B. T., Chen, Z., Lopez-Martinez, G., Gallagher, N. T., Brown, G., Neal, M., Thistleton, B. and Kleinschmidt, S. 2007. Phylogeography illuminates maternal origins of exotic Coptotermes gestroi (Isoptera: Rhinotermitidae). Mol. Phylogenet. Evol., 42(3): 612-621.
  • Jouquet, P., Airola, E., Guilleux, N., Harit, A., Chaudhary, E., Grellier, S. and Riotte, J. 2017. Abundance and impact on soil properties of cathedral and lenticular termite mounds in Southern Indian woodlands. Ecosystems, 20(4): 769-80.
  • Kambhampati, S., Kjer, K. M. and Thorne, B. L. 1996. Phylogenetic relationship among termite families based on DNA sequence of mitochondrial 16S ribosomal RNA gene. Insect. Mol. Biol., 5(4): 229-238.
  • Ke, Y., Wu, W., Zhang, S. and Li, Z. 2017. Morphological and genetic evidence for the synonymy of Reticulitermes species: Reticulitermes dichrous and Reticulitermes guangzhouensis (Isoptera: Rhinotermitidae). Fla. Entomol., 100(1): 101-108.
  • Need for integration of morphotaxonomy....Termite Taxa (Insecta: Blattaria)
  • Kerr, K. C. R., Stoeckle, M. Y., Dove, C. J., Weigt, L. A., Francis, C. M. and Hebert, P. D. N. 2007. Comprehensive DNA barcode coverage of North American birds. Mol. Ecol. Notes., 7(4): 535-543.
  • Kim, M.-J., Choi, Y.-S., Lee, J., Kim, J.-J. and Kim, G.-H. 2012. Molecular characteristics of subterranean termites of the genus Reticulitermes (Isoptera; Rhinotermitidae) from Korea. Ann. Entomol. Soc. Am., 105(1): 97-102.
  • Knowlton, N. 1993. Sibling species in the sea. Annu. Rev. Ecol. Systemat., 24(1): 189- 216.
  • Kumar, K., Grimaldi, D. A., Krishna, V. and Engel, M. S. 2013. Treatse on the Isoptera of the World. Vols. 1-7. Bull. Am. Mus. Nat. Hist., 377(1-7): 5-2704.
  • Kumari, M., Sharma, V. L., Sodhi, M., Mukesh, M., Shouche, Y. and Sobti, R. C. 2009. PCR-SSCP and sequence analysis of three Odontotermes spp. (Order: Isoptera; Family: Termitidae) on the basis of partial 16S rRNA gene. Mol. Cell. Biochem., 330(1-2): 153-162.
  • Kutnik, M., Uva, P., Brinkworth, L. and Bagnères, A.-G. 2004. Phylogeography of two European Reticulitermes (Isoptera) species: the Iberian refugium. Mol. Ecol., 13(10): 3099-3113.
  • Lee, C-Y., Forschler, B. T. and Jenkins, T. M. 2005. Taxonomic questions on Malaysian termites (Isoptera: Termitidae) answered with morphology and DNA biotechnology. In: C.-Y. Lee and W. H. Robinson (eds.), Proceedings of the Fifth International Conference on Urban Pests,Singapore, pp. 205-211. P & Y Design Network, Malaysia.
  • Lee, T. R. C., Cameron, S. L., Evans, T. A., Ho, S. Y. W. and Lo, N. 2015. The origins and radiation of Australian Coptotermes termites: from rainforest to desert dwellers. Mol. Phylogenet. Evol., 82: 234-244.
  • Legendre, F., Whiting, M. F., Bordereau, C., Cancello, E. M., Evans, T. A. and Grandcolas, P. 2008. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol., 48(2): 615-627.
  • Leniaud, L., Dedeine, F., Pichon, A., Dupont, S. and Bagnères, A.-G. 2010. Geographical distribution, genetic diversity and social organization of a new European termite, Reticulitermes urbis (Isoptera: Rhinotermitidae). Biol. Invasions, 12(5): 1389-1402.
  • Li, H.-F., Ye, W., Su, N.-Y. and Kanzaki, N. 2009. Phylogeography of Coptotermes gestroi and Coptotermes formosanus (Isoptera: Rhinotermitidae) in Taiwan. Ann. Entomol. Soc. Am., 102(4): 684-693.
  • Lim, S. Y. and Forschler, B. T. 2012. Reticulitermes nelsonae, a new species of subterranean termite (Rhinotermitidae) from the southeastern United States. Insects, 3(1): 62-90.
  • Liu, H. and Beckenbach, A. T. 1992. Evolution of the mitochondrial cytochrome oxidase II gene among 10 orders of insects. Mol. Phylogenet. Evol., 1(1): 41-52.
  • Luchetti, A., Trenta, M., Mantovani, B. and Marini, M. 2004. Taxonomy and phylogeny of north Mediterranean Reticulitermes termites (Isoptera, Rhinotermitidae): a new insight. Insectes Soc., 51(2): 117-122.
  • Luchetti, A., Marini, M. and Mantovani, B. 2007. Filling the European gap: biosystematics of the eusocial system Reticulitermes (Isoptera, Rhinotermitidae) in the Balkanic Peninsula and Aegean area. Mol. Phylogenet. Evol., 45(1): 377-383.
  • Moritz, C. and Cicero, C. 2004. DNA Barcoding: promise and pitfalls. PLOS Biol., 2(10): e354.
  • Murthy, K. S. 2020. Molecular identity of subterranean termites. Int. J. Appl. Sci. Biotechnol., 8(4): 410-416.
  • Murthy, K. S., Rajeshwari, R., Ramya, S. L., Venkatesan, T., Jalali, S. K. and Verghes, A. 2015. Genetic diversity among Indian termites based on mitochondrial 12S rRNA gene. Euro. J. Zool. Res., 4(1): 1-6.
  • Murthy, K. S., Yeda, L. B. and Ramakrishna, P. 2016. Diversity of subterranean termites in South India based on COI Gene. J. Biodivers. Biopros. Dev., 4(1): 1-7.
  • Okpul, T., Mace, E. S., Godwin, I. D., Singh, D. and Wagih, M. E. 2005. Evaluation of variability among breeding lines and cultivars of taro (Colocasia esculenta) in Papua New Guinea using ISSR fingerprinting and agro morphological characterization. Plant Genet. Resour. Newsl., 143: 8-16..
  • Patel, P. and Jadhav, B. L. 2019. Genetic diversity and phylogeny of subterranean termites from Maharashtra using mitochondrial COI gene. RJLBPCS, 5(1): 869-883.
  • Paul, B., Khan, M. A., Paul, S., Shankarganesh, K. and Chakravorty, S. 2018. Termites and Indian agriculture. Ch. 3. In: M. A. Khan and W. Ahmad (eds.), Termites And Sustainable Management. Springer, pp. 51-96.
  • Pearce, M. J. 1997. Laboratory Culture and Experimental Techniques Using Termites. Natural Resources Institute (NRI), p. 52.
  • Poonia, S., Devi, P. and Poonia, A. 2020. Termite control industry in Haryana: present status, challenges and opportunities. In: V. Kumar, A. Jindal, P. Devi and J. Kumar (eds.), Inter-Disciplinary Issues in Social Sciences: A Research Perspective. New Delhi, pp. 18-23.
  • Need for integration of morphotaxonomy....Termite Taxa (Insecta: Blattaria)
  • Rajmohana, K., Basak, J., Poovoli, A., Sengupta, R., Baraik, B. and Chandra, K. 2019. Taxonomy of Termites in India: A Beginner’s Manual. ENVIS Centre on Biodiversity (Fauna), Zoological Survey of India, Kolkata, pp. 77.
  • Rocha, M. M., Morales-Corrêa e Castro, A. C., Cuezzo, C. and Cancello, E. M. 2017. Phylogenetic reconstruction of Syntermitinae (Isoptera, Termitidae) based on morphological and molecular data. PLoS ONE,12(3): e0174366 (pp. 1-29).
  • Rocha, M. M., Cuezzo, C., Constantini, J. P., Oliveira, De, Santos, R. G., Carrijo, T. F. and Cancello, E. M. 2019. Overview of the morphology of neotropical termite workers: history and practice. Sociobiol., 66(1): 1-32.
  • Roonwal, M. L. and Chhotani, O. B. 1989. The Fauna of India and the Adjacent Countries: Isoptera, (Termites). Vol. 1. Zoological Survey of India, Calcuta. Zoological Survey of India, Calcuta, pp. viii+ 672.
  • Roy, V., Demanche, C., Livet, A. and Harry, M. 2006. Genetic differentiation in the soil-feeding termite Cubitermes sp. affinis subarquatus: occurrence of cryptic species revealed by nuclear and mitochondrial markers. BMC Evol. Biol., 6(1): 102.
  • Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual (2ndeds). Cold Spring Harbor, New York.
  • Sands, W. A. 1972. The soldierless termites of Africa (Isoptera: Termitidae). Bull. Br. Mus. Nat. Hist. (Ent.), Suppl., 18: 1-244.
  • Savolainen, V., Cowan, R. S., Vogler, A. P., Roderick, G. K. and Lane, R. 2005. Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 360(1462): 1805-1811.
  • Sharma, V. L., Singla, M. and Sobti, R. C. 2013. Phylogenetic position of Indian termites (Isoptera: Termitidae) with their respective genera inferred from DNA sequence analysis of the mitochondrial cytochrome oxidase gene subunit I compared to subunit II. Mol. Cell. Biochem., 384(1): 39-45.
  • Singla, M., Sharma, V. L., Sobti, R. C., Sodhi, M. and Kumari, M. 2013. Genetic relationship among Indian termites based on DNA sequence of mitochondrial 12S ribosomal RNA gene. Int. J. Evol., 2: 1 (5 pp.).
  • Singla, M., Goyal, N., Sobti, R. C. and Sharma, V. L. 2015. Estimating molecular phylogeny of some Indian termites combining partial COI sequences. J. Entomol. Zool. Stud., 3(6): 213-218.
  • Sobti, R. C., Kumari, M., Sharma, V. L., Sodhi, M., Mukesh, M. and Shouche, Y. 2009. Sequence analysis of a few species of termites (Order: Isoptera) on the basis of partial characterization of COII gene. Mol. Cell. Biochem., 331(1): 145-151.
  • Sorkheh, K., Dehkordi, M. K., Ercisli, S., Hegedus, A. and Halász, J. 2017. Comparison of traditional and new generation DNA markers declares high genetic diversity and differentiated population structure of wild almond species. Scientific Reports, 7: 5966 (17 pp.).
  • Szalanski, A. L., Austin, J. W. and Owens, C. B. 2003. Identification of Reticulitermes spp. (Isoptera: Reticulitermatidae) from south central United States by PCRRFLP. J. Econ. Entomol., 96(5): 1514-1519.
  • Tautz, D., Arctander, P., Minelli, A., Thomas, R. H. and Vogler, A. P. 2003. A plea for DNA taxonomy. Trends Ecol. Evol., 18(2): 70-74.
  • Vesterlund, S.-R., Sorvari, J. and Vasemägi, A. 2014. Molecular identification of cryptic bumblebee species from degraded samples using PCR–RFLP approach. Mol. Ecol. Resour., 14(1): 122-126.
  • Vidyashree, A. S., Kalleshwaraswamy, C. M., Asokan, R. and Mahadevaswamy, H. M. 2015. Genetic Diversity of Termite (Isoptera) Fauna of Western Ghats of India. Int. J. Bioengin. Life Sci., 9(12): 1.
  • Vidyashree, A. S., Kalleshwaraswamy, C. M., Mahadeva, S. H. M., Asokan, R. and Adarsha, S. K. 2018. Morphological, molecular identification and phylogenetic analysis of termites from Western Ghats of Karnataka, India. J. Asia. Pac. Entomol., 21(1): 140-149.
  • Wang, C., Zhou, X., Li, S., Schwinghammer, M., Scharf, M. E., Buczkowski, G. and Bennett, G. W. 2009. Survey and identification of termites (Isoptera: Rhinotermitidae) in Indiana. Ann. Entomol. Soc. Am., 102(6): 1029-1036.
  • Ward, R. D., Hanner, R. and Hebert, P. D. N. 2009. The campaign to DNA barcode all fishes, J. Fish. Biol., 74(2): 329-356.
  • Welsh, J. and McClelland, M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 18(24): 7213-7218.
  • Yashiro, Y., Takematsu, Y., Ogawa, N. and Matsuura, K. 2019. Taxonomic assessment of the termite genus Neotermes (Isoptera: Kalotermitidae) in the Ryukyu- Taiwan Island arc, with description of a new species. Zootaxa, 4604(3): 549-561.
  • Ye, W., Lee, C.-Y., Scheffrahn, R. H., Aleong, J. M., Su, N.-Y., Bennett, G. W. and Scharf, M. E. 2004. Phylogenetic relationships of nearctic Reticulitermes species (Isoptera: Rhinotermitidae) with particular reference to Reticulitermes arenincola Goellner. Mol. Phylogenet. Evol., 30(3): 815-822.
  • Zhu, Y., Li, J., Liu, H., Yang, H., Xin, S., Zhao, F., Zhang, X., Tian, Y. and Lu, X. 2012. Phylogenetic analysis of the gut bacterial microflora of the fungusgrowing termite Macrotermes barneyi. Afr. J. Microbiol. Res., 6(9): 2071-2078.

Abstract Views: 17

PDF Views: 0




  • NEED FOR INTEGRATION OF MORPHOTAXONOMY AND MOLECULAR SIGNATURE IN DETERMINATION OF INDIAN TERMITE TAXA (INSECTA: BLATTARIA)

Abstract Views: 17  |  PDF Views: 0

Authors

Sanjeev K. Gupta
Department of Zoology, The Institute of Integrated and Honors studies (IIHS), Kurukshetra University, Kurukshetra-136119, Haryana, India, India
Shantanu Kundu
Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata-700053, India, India

Abstract


Termites are an important group of social insects and are considered as ‘ecosystem engineers’ for their role in organic decomposition, maintaining soil fertility, and hydrological parameters. They contribute large biomass in nature and often become pests. They have different reproductive and non-reproductive castes in a colony. Processes of morpho-taxonomical analyses for species determination are well developed, yet face questions as the insects have diagnostic traits limited to some castes only. These taxonomic limitations have a bearing on ecological and pest management studies. Molecular identification poses to minimize this problem of morpho-taxonomy. Mitochondrial genome or DNA barcoding serves as an additional tool to delineate species and ascertain their relationships. Hence, a classical species determination approach combined with molecular markers and barcoding techniques promises to resolve the existing taxonomic problems and controversies.

Keywords


Blattaria, Morphology, Molecular systematics, Mitochondrial markers, Nuclear markers.

References