Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

CELLULAR RESPONSE TO ENVIRONMENTAL STRESS IN CORAL BLEACHING: AN OVERVIEW


Affiliations
1 Department of Zoology, Vijaygarh Jyotish Ray College, Jadavpur, Kolkata-700032, India
     

   Subscribe/Renew Journal


Sustainability of the coral reef ecosystem depends on symbiotic relationship between corals and their algae which is threatened due to various environmental factors. These often lead to mass coral bleaching at global scale. These stresses cause numerous cellular responses among the symbiotic partners although the exact cellular and molecular mechanism by which they fall apart are yet not fully known. Various proximal events like, symbiont degradation, programed cell death and even alteration in gene expression pattern in both the coral polyps and alga due to stress are now increasingly known. These cellular responses weaken the symbiotic stability and stimulate the bleaching phenomenon in corals.

Keywords

Coral polyps, Zooxanthellae. Symbionts, Environmental factors, Cellular dysfunction, Bleaching.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Ainsworth, T. D. and Hoegh-Guldberg, O. 2008. Cellular processes of bleaching in the Mediterranean coral Oculina patagonica. Coral Reefs., 27: 593-597.
  • Chen, M. C., Hong, M. C., Huang, Y. S., Lin, M. C., Cheng, Y. M. and Fang, L. S. 2005. ApRab 11, a cnidarian homologue of the recycling regulatory protein Rab 11, is involved in the establishment and maintenance of the Aiptasia-Symbiodinium endosymbiosis. Biochem. Biophys. Res. Communm., 338: 1607-1616.
  • Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. and Matz, M. V. 2018. CRISPR/Cas 9-mediated genome editing in a reef-building coral. Proc. Natl. Acad. Sci. U.S.A., 115: 5235-5240.
  • Cleves, P. A., Krediet, C. J., Lehnert, E. M., Onishi, M and Pringle, J. R. 2020. Insights into coral bleaching under heat stress from analysis of gene expression in a sea anemone model system. PNAS Latest Articles. www. Pnas.org/cgi/ doi/10.1073/pnas.201537117.
  • Downs, C. A., Mueller, E., Phillips, S., Fauth, J.E., and Woodley, C.M. 2000. A molecular biomarker system for assessing the health of coral (Montastraea faveolata) during heat stress. Mar. Biol., 2: 533-544.
  • Downs, C. A., Kramarsky-Winter, E., Martinez, J., Kushmaro, A., Woodley, C. M., Loya, Y and Ostrander, G. K. 2009. Symbiophagy as a cellular mechanism for coral bleaching. Autophagy, 5(2): 211-216.
  • Dunn, S. R., Thomason, J. C., Le Tissier, M. D. A. and Bythell, J. C. 2004. Heat stress induces different forms of cell death in sea anemones and their endosymbiotic algae depending on temperature and duration. Cell Death Differ., 11: 1213-122.
  • Cellular response to environmental stress in coral bleaching: An Overview
  • Dunn, S. R., Schnitzler, C. E. and Weis, V. M. 2007. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. Lond. B. 274: 3079-3085.
  • Dunn, S. R., Pernice, M., Green, K., Hoegh-Guldberg, O and Dove, S.G. 2012. Thermal stress promotes host mitochondrial degradation in symbiotic cnidarians: Are the batteries of the reef going to run out? PLoS ONE, 7(7): e39024.
  • Gardner, S. G., Raina Jean-Baptiste, Ralph, P. J. and Petrou, K. 2017. Reactive oxygen species (ROS) and dimethyl sulphur compounds in coral explants under acute thermal stress. J. Expt. Biol., 220: 1787-1791.
  • Goulet, T. L. 2006. Most corals may not change their symbionts. Mar. Ecol. Prog. Ser., 321: 1-7.
  • Glynn, P. W. 1996. Coral reef bleaching: facts, hypothesis and implications. Glob. Change Biol., 2(6): 495-509.
  • Hanes, S. D. and Kempf, S. C. 2013. Host autophagic degradation and associated symbiont loss in response to heat stress in the symbiotic anemone, Aiptasia pallida. Invertebr Biol., 132: 95-107.
  • Ishii, Y, Maruyama, S., Takahashi, H., Aihara, Y., Yamaguchi, T., Yamaguchi, K., Shigenobu, S., Kawata, M., Ueno, N. and Minagawa, J. 2019. Global shifts in gene expression profiles accompanied with environmental changes in cnidariandinoflagellate endosymbiosis. Genes/Genomes/Genetics, 9(7): 2337-2347.
  • Jones, A. M., Berkelmans, R., van Oppen, M. J. H., Mieog, J. C. and Sinclair, W. 2008. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc. R. Soc. Lond. B. Biol. Sci., 275: 1359-1365.
  • Kleppel, G. S., Dodge, R. E. and Reese, C. J. 1989. Changes in pigmentation associated with the bleaching of stony corals. Limnol. Oceanogr., 34: 1331-1335.
  • Krueger, T., Becker, S., Pontasch, S., Dove, S., Hoegh-Guldberg, O., Leggat, W., Fisher, P. L. and Davy, S. K. 2014. Antioxidant plasticity and thermal sensitivity in four types of Symbiodinium sp. J. Phycol., 50: 1035-1047.
  • Oakley, C. A., Durand, E., Wilkinson, S. P., Peng, L., Weis, V. M., Grossman, A.R. and Davy, S. K. 2017. Thermal shock induces host proteostasis disruption and endoplasmic reticulum stress in the model symbiotic cnidarian Aiptasia. J. Proteome Res., 16: 2121-2123.
  • Richier, S., Sabourault, C., Courtiade, J., Zucchini, N., Allemand, D. and Furla, P. 2006. Oxidative stress and apoptotic events during thermal stress in the symbiotic sea anemone, Anemonia viridis. FEBS Journal, 273(18): 4186-4198.
  • Suggett, D. J., Warner, M. E., Smith, D. J., Davey, P, Hennige, S and Baker, N. R. 2008. Photosynthesis and production of hydrogen peroxide by Symbodinium (Pyrrhophyta) phylotypes with different thermal tolerances. J. Phycol., 44(4): 948-956.
  • Tchernov, D., Gorbunov M. Y., de Vargas C., Yadav S. N., Milligan A. J., Häggblom M and Falkowski P. G. 2004. Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals, Prod. Natl. Acad. Sci. USA., 101(37): 13531-13535.
  • Tchrenov, D., Kvitt, H., Haramaty, L., Bibby, T. S., Gorbunov, M. Y., Rosenfeld, H. and Falkowski, P. G. 2011. Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proc. Natl. Acad. Sci. USA., 108(24): 9905-9909.
  • Weis, V. M. 2008. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J. Exp. Biol., 211(19): 3059-3066.

Abstract Views: 1

PDF Views: 0




  • CELLULAR RESPONSE TO ENVIRONMENTAL STRESS IN CORAL BLEACHING: AN OVERVIEW

Abstract Views: 1  |  PDF Views: 0

Authors

Sudeshna Ghoshal
Department of Zoology, Vijaygarh Jyotish Ray College, Jadavpur, Kolkata-700032, India

Abstract


Sustainability of the coral reef ecosystem depends on symbiotic relationship between corals and their algae which is threatened due to various environmental factors. These often lead to mass coral bleaching at global scale. These stresses cause numerous cellular responses among the symbiotic partners although the exact cellular and molecular mechanism by which they fall apart are yet not fully known. Various proximal events like, symbiont degradation, programed cell death and even alteration in gene expression pattern in both the coral polyps and alga due to stress are now increasingly known. These cellular responses weaken the symbiotic stability and stimulate the bleaching phenomenon in corals.

Keywords


Coral polyps, Zooxanthellae. Symbionts, Environmental factors, Cellular dysfunction, Bleaching.

References