Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Genetic Improvement Of Banana Plants And Their Future Prospect


Affiliations
1 Department of Biotechnology, Brainware University, Barasat, Kolkata-700125, India
     

   Subscribe/Renew Journal


Banana (Musa spp.), a highly nutritious fruit, developes without seed due to sterility and parthenocarpic nature of plant. The main aim of genetic improvements in banana range from improved fruit quality, improved yield, disease resistance, tolerance to different biotic and abiotic stresses, to the biosynthesis of pharmaceutical compounds. Other beneficial characteristics include early flowering and maturity, short stature, photosynthetic efficiency, minimum period between successive harvests, strong roots, cylindrical bunches of fruits and fruits of uniform size. It is very difficult to combine all these traits in a single hybrid through sexual hybridization. In vitro culture based technologies that involve embryo rescue, generation of somaclonal variation, and gene-transfer procedures are the alternative to sexual hybridization. The process of transformation involving Agrobacterium and biolistics mediated gene transfer is highly desirable. Future researches on banana will need more attention towards higher nutritive value, genomics, genetic mapping, low cost micropropagation, and somatic embryogenesis. Development of improved varieties with ideal gene architecture, and more resistance to pathogens and pests would be the goal of future researches on banana.

Keywords

Parthenocarpic, Somaclonal variation, Hybrids, Micropropagation, Agrobacterium.
Subscription Login to verify subscription
User
Notifications
Font Size


  • Acereto-Escoffi, P. O. M., Chi-Manzanero, B. H., Echeverría-Echeverría, S., Gríjalva, R., Kay, A. J., González-Estrada, Castaño, T., E. and Rodríguez-Zapata, L. C. 2005. Agrobacterium-mediated transformation of Musa acuminata cv. “Grand Nain” scalps by vacuum infiltration. Sci. Hortic., 105(3): 359-371. https://doi.org/10.1016/j.scientia.2005.01.028
  • Assani, A., Chabane, D., Haicour, R., Bakry, F. Wenzel, G. and Foroughi-Wehr, B. 2005. Protoplast fusion in banana (Musa spp.): comparison of chemical (PEG: polyethylene glycol) and electrical procedure. Plant Cell Tissue. Organ Cult., 83: 145-151.
  • Aurore, G., Parfait, B. and Fahrasmane, L. 2009. Bananas, raw materials for making processed food products. Trends Food Sci. Tech., 20(2): 78-91.
  • Bakry, F., and Horry, J. P. 1992. Tetraploid hybrids from interploid 3x /2x crosses in cooking bananas. Fruits, 47(6): 641-647.
  • Becker, D. K., Dugdale, B., Smith, M. K., Harding, R. M. and Dale, J. L. 2000. Genetic transformation of Cavendish banana (Musa spp. AAA group) cv. ‘Grand Nain’ via microprojectile bombardment. Plant Cell Rep., 19: 229-234.
  • Dash, P. K., and Rai, R. 2016. Translating the “Banana Genome” to delineate stress resistance, dwarfing, parthenocarpy and mechanisms of fruit ripening. Front. Plant Sci., 7: 1543.
  • Davey, M. R., Anthony, P., Patel, D. and Power, J. B. 2010. Plant protoplasts: isolation, culture and plant regeneration. Ch. 9. In: M. R. Davey and P. Anthony (eds.), Plant Cell Culture: Essential Methods. John Wiley & Sons Ltd., pp. 153-173.
  • De Langhe, E., Vrydaghs, L., De Maret, P., Perrier, X., and Denham, T. 2008. Why bananas matter: an introduction to history of banana domestication. Ethnobot. Res. Appl., 7: 165-177.
  • Ganapathi, T. R., Srinivas, L. Suprasama, P. and Bapat, V. A. 2001. Regeneration of plants from alginate-encapsulated somatic embryos of banana cv. Rasthali (Musa spp. AAB Group). In Vitro Cell. Dev. Biol. Plant, 37: 171-181.
  • Heslop-Harrison, J. S., and Schwarzacher, T. 2007. Domestication, genomics and the future for banana. Ann. Bot., 100(5): 1073-1084.
  • Hwang, S. C. 2001. Recent development on Fusarium R & D of banana in Taiwan. In: A. B. Molina, N. H. Nik Masdek, and K. W. Liew (eds.), Banana Fusarium Wilt Management: Towards Sustainable Cultivation. Proceedings of the International Workshop on the Banana Fusarium Wilt Disease, Malaysia, pp. 39-49.
  • Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., Qian, Q. and Li, J. 2010. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet., 42: 541-544.
  • Jones, D. R. 1999. Diseases of Banana, Abaca and Enset. Wallingford, UK: CABI Publisher, 544 pp.
  • Kitomi, Y., Kanno, N., Kawai, S., Mizubayashi, T., Fukuoka, S., and Uga, Y. 2015. QTLs underlying natural variation of root growth angle among rice cultivars with the same functional allele of DEEPER ROOTING 1. Rice (N. Y.), 8: 16.
  • Matsumoto, K., Vilarinhos, A. D. and Oka, S. 2002. Somatic hybridization by electrofusion of banana protoplasts. Euphytica, 125: 317-324.
  • May, G. D., Afza, R., Mason, H. S., Wiecko, A., Novak, F. J. and Arntzen, C. J. 1995. Generation of transgenic banana (Musa acuminata) plants via Agrobacteriummediated transformation. Biotechnol, 13: 486-492.
  • Msogoya T., Grout, B. and Roberts, A. 2008. Karyotypic and 2C nuclear DNA size instability in vitro induced off-types of East African Highland banana (Musa AAA East Africa). Biotechnol (Pak), 7(3): 578-581.
  • Pillay, M. and Tripathi, L. 2007. Banana: an overview of breeding and genomics research in Musa. In: C. Kole (ed.), Genome Mapping and Molecular Breeding in Plants, Vol. 4. Fruits and Nuts. Springer-Verlag, Heidelberg, Germany, pp. 281-301.
  • Pua, E. C. 2007. Banana. In: E. C. Pua and M. R. Davey (eds.), Botechnology in Agriculture and Forestry. Vol. 60. Transgenic Crops V. Springer-Verlag Berlin, pp. 3-34.
  • Rayis, S. A. and Abdallah, A. A. 2015. Somatic embryogenesis for the genetic improvement of a triploid banana (Musa spp. AAA cv. Berangan) using three different media with different growth regulators. Int J. Rec. Res Life Sci., 2(1): 53-58.
  • Remakanthan, A., Menon, T. G, and Soniya, E. V. 2014. Somatic embryogenesis in banana (Musa accuminata AAA cv. Grand Naine): effect of explant and culture conditions. In Vitro Cell. Dev. Biol. Pl. 50: 127-136.
  • Genetic improvement of banana plants and their future prospect
  • Sagi, L., Panis, B., Remy, S., Schoofs, H., De Smet, K., Swennen, R. and Cammue., B. 1995. Genetic transformation of banana and plantain (Musa spp.) via particle bombardment. Biotechnol., 13(5): 481-485.
  • Smith, M. K., Hamill, S. D., Becker, D. K. and Dale, J. L. 2005. Musa spp. Banana and plantain. In: R. E. Litz, F. Pliego-Alfaro and J. I. Hormaza (eds.), Biotechnology of Fruit and Nut Crops. CAB Internatinal, Wallingford, Oxford, UK., pp. 365-391.
  • Strosse, H., Domergue, R. Panis, B. Escalant, J-V. and Cote, F. 2003. Banana and plantain embryogenic cell suspensions. In: A. Vézina and C. Picq, (eds.), INIBAP Technical Guidelines 8, pp. 5-31. The International Network for the Improvement of Banana and Plantain, Montpellier, France.
  • Strosse, H., Schoofs, H., Panis, B., Andre, E., Reyniers, K. and Swennen, R. 2006. Development of embryogenic cell suspensions from shoot meristematic tissue in bananas and plantains (Musa spp.). Plant Sci., 170(1): 104-112.
  • Tian, J., Wang, C., Xia, J., Wu, L., Xu, G., Wu, W., Li, D., Qin, W., Han, X., Chen, Q., Jin, W. and Tian, F. 2019. Teosinte ligule allele narrows plant architecture and enchances high-density maize yields. Science, 365(6454): 658-664. Doi: 10.1126/science.aax.5482.
  • Tzean, Y., Lee, M-C., Jan, H-H., Chiu, Y-S., Tu, T-C., Hou, B-H., Chen, H-M., Chou, C-N., and Yeh, H-H. 2019. Cucumber mosaic virus-induced gene silencing in banana. Sci. Rep., 9(1): 11553. DOI: 10.1038/s41598-019-47962-3.
  • Uma, S., Lakshmi, S., Saraswathi, M. S., Akbar, A. and Mustaffa, M. M. 2011. Embryo rescue and plant regeneration in banana (Musa spp.). Plant Cell Tiss. Org. Cult., 105: 105-111.
  • Vroh-Bi, I., Anagbogu, C., Nnandi, S. and Tenkouano, A. 2010. Genomic characterization of nadel/2011/tural and somaclonal variations in bananas (Musa spp.). Plant Mol. Biol. Rep., 29: 440-448.

Abstract Views: 220

PDF Views: 0




  • Genetic Improvement Of Banana Plants And Their Future Prospect

Abstract Views: 220  |  PDF Views: 0

Authors

Samarjit Ray
Department of Biotechnology, Brainware University, Barasat, Kolkata-700125, India

Abstract


Banana (Musa spp.), a highly nutritious fruit, developes without seed due to sterility and parthenocarpic nature of plant. The main aim of genetic improvements in banana range from improved fruit quality, improved yield, disease resistance, tolerance to different biotic and abiotic stresses, to the biosynthesis of pharmaceutical compounds. Other beneficial characteristics include early flowering and maturity, short stature, photosynthetic efficiency, minimum period between successive harvests, strong roots, cylindrical bunches of fruits and fruits of uniform size. It is very difficult to combine all these traits in a single hybrid through sexual hybridization. In vitro culture based technologies that involve embryo rescue, generation of somaclonal variation, and gene-transfer procedures are the alternative to sexual hybridization. The process of transformation involving Agrobacterium and biolistics mediated gene transfer is highly desirable. Future researches on banana will need more attention towards higher nutritive value, genomics, genetic mapping, low cost micropropagation, and somatic embryogenesis. Development of improved varieties with ideal gene architecture, and more resistance to pathogens and pests would be the goal of future researches on banana.

Keywords


Parthenocarpic, Somaclonal variation, Hybrids, Micropropagation, Agrobacterium.

References