Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Evolution in Relationship Between Mascarene Highs and Indian Summer Monsoon In Recent Times


Affiliations
1 Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India
     

   Subscribe/Renew Journal


Mascarene Highs (MH) is an important semi-permanent feature of Indian summer Monsoon(ISM). It is a subtropical anticyclonic feature located in the Southern Indian Ocean. The relationship between ISMR and Mascarenes highs is quite complex and is attributed to thermal and pressure gradients developed between the two regions (particularly during JJAS season) developed due to differential heating of land and water in the two regions. Global warming hiatus (comparative cooling of ocean waters in western Pacific) post 1998 have led to redistribution of thermal energy across the Indonesian through flow to the Indian ocean as a result the region has experienced rising SSTs. Declining Mean Sea Level Pressure (MSLP), rising SST and latitudinal and longitudinal shifts in the mean annual location of the centre of MH have led to reconfiguration of the relationship of Mascarene High with Indian Summer Monsoon. This changing relationship may be considered as one of many factors controlling recent revival/strengthening of Indian Summer Monsoon in recent times.

Keywords

Mascarene Highs (MH), Anticyclone, Global Warming Hiatus, Indian Summer Monsoon (ISM).
Subscription Login to verify subscription
User
Notifications
Font Size


  • Arora, A., Rao, S. A., Chattopadhyay, R., Goswami, T., George, G. and Sabeerali, C. T. 2016. Role of Indian Ocean SST variability on the recent global warming hiatus. Glob. Planet Change., 143: 21-30.
  • Ashok, K., Guan, Z., Saji, N. H. and Yamagata, T. 2004. Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Clim., 17(16): 3141-3155..
  • Behera, S. K., Luo, J. J., Masson, S., Delecluse, P., Gualdi, S., Navarra, A. and Yamagata, T. 2005. Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Clim., 18(21): 4514-4530.
  • Bhalme, H. N. and Mooley, D. A. 1980. Large-scale droughts/floods and monsoon circulation. Mon. Weather Rev., 108(8): 1197-1211.
  • Clemens, S. C. and Prell, W. L. 2007. The timing of orbital-scale Indian monsoon changes. Quat. Sci. Rev., 26(3-4): 275-278.
  • Dash, S. K., Parth Sarthi, P. and Shekhar, M. S. 2008. Influence of Eurasian and Tibetan snow on Indian Summer Monsoon. In: P. N. Vinayachandran (ed.), Understanding and Forecasting of Monsoons, pp. 108-118. NAM S & T Centre.
  • Dong, L. and McPhaden, M. J. 2016. Interhemispheric SST gradient trends in the Indian Ocean prior to and during the recent global warming hiatus. J. Clim., 29(24): 9077-9095.
  • Gadgil, S. and Joseph, P. V. 2003. On breaks of the Indian monsoon. J. Earth Syst. Sci., 112(4): 529-558.
  • Ghanekar, S. P., Bansod, S. D., Narkhedkar, S. G. and Kulkarni, A. 2019. Variability of Indian summer monsoon onset over Kerala during 1971– 2018. Theor. Appl. Climatol., 138(1): 729-742.
  • Gupta, A. K., Prakasam, M., Dutt, S., Clift, P. D. and Yadav, R. R. 2020. Evolution and development of the Indian Monsoon. In: N. Gupta and S. Tandon (eds.), Geodynamics of the Indian Plate. Springer Geology. Springer, Cham, pp. 499-535.
  • Hersbach, H., Bell, B., Berrisford, P., Bivavati, G., Dee, D., Horányi, A., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Muñoz-Sabater, J., Schepers, D., Simmons, A., Soci, C., Thépaut, J-N. and Vamborg, F. 2019. The ERA5 Global Atmospheric Reanalysis at ECMWF as a comprehensive dataset for climate data homogenization, climate variability, trends and extremes. In: Geophysical Research Abstracts (Vol. 21).
  • Hrudya, P. H., Varikoden, H. and Vishnu, R. 2021. A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD. Meteorol. Atmos. Phys., 133(1): 1-14.
  • Jagannathan, P. and Parthasarathy, B. 1973. Trends and periodicities of rainfall over India. Mon. Weather Rev., 101(4): 371-375.
  • Jyoti, J., Swapna, P., Krishnan, R. and Naidu, C. V. 2019. Pacific modulation of accelerated south Indian Ocean sea level rise during the early 21st Century. Clim. Dyn., 53(7): 4413-4432.
  • Krishnamurti, T. N. and Bhalme, H. N. 1976. Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci., 33(10): 1937-1954.
  • Krishnan, R., Singh, B., Vellore, R., Mujumdar, M., Swapna, P., Choudhury, A., Singh, M., Preethi, B. and Rajeevan, M. 2020. A short perspective on the Mascarene High and the abnormal Indian Monsoon during 2015. ar Xiv preprint ar Xiv: 2011.11372.
  • Manatsa, D. and Behera, S. K. 2013. On the epochal strengthening in the relationship between rainfall of East Africa and IOD. J. Clim., 26(15): 5655-5673.
  • Manatsa, D., Morioka, Y., Behera, S. K., Matarira, C. H. and Yamagata, T. 2014. Impact of Mascarene High variability on the East African ‘short rains’. Clim. Dyn., 42(5): 1259-1274.
  • Marchant, R., Mumbi, C., Behera, S. and Yamagata, T. 2007. The Indian Ocean dipole - the unsung driver of climatic variability in East Africa. Afr. J. Ecol., 45(1): 4-16.
  • Mooley, D. A. 1975. Climatology of the Asian summer monsoon rainfall - controls and concentration. Geogr. Rev. India, 37: 7-20.
  • Neelin, J. D., Held, I. M. and Cook, K. H. 1987. Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44(16): 2341-2348.
  • Ogwang, B. A., Chen, H., Tan, G., Ongoma, V. and Ntwali, D. 2015. Diagnosis of East African climate and the circulation mechanisms associated with extreme wet and dry events: a study based on RegCM4. Arab. J. Geosci., 8(12): 10255-10265.
  • Parthasarathy, B. and Dhar, O. N. 1974. Secular variations of regional rainfall over India. Q. J. R. Meteorol. Soc., 100(424): 245-257.
  • Roxy, M. K., Ritika, K., Terray, P., Murtugudde, R., Ashok, K. and Goswami, B. N. 2015. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat. Commun., 6(1): 7423. DOI: 10.1038. ncomms8423.
  • Saji, N. H., Goswami, B. N., Vinayachandran, P. N. and Yamagata, T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751): 360-363.
  • Shi, W., Xiao, Z. and Xue, J. 2016. Teleconnected influence of the boreal winter Antarctic oscillation on the Somali Jet: bridging role of sea surface temperature in southern high and middle latitudes. Adv. Atmos. Sci., 33(1): 47-57.
  • Vuille, M., Franquist, E., Garreaud, R., Casimiro, W. S. L. and Cáceres, B. 2015. Impact of the global warming hiatus on Andean temperature. J. Geophys. Res. Atmos., 120(9): 3745-3757.
  • Wang, H. and Xue, F. 2013. The interannual variability of Somali Jet and its influences on the inter-hemispheric water vapor transport and the East Asian summer rainfall. Chin. J. Geophys., 46(1): 11-20.
  • Xue, F., Wang, H. and He, J. 2003. Interannual variability of Mascarene high and Australian high and their influences on summer rainfall over East Asia. Chin. Sci. Bull,, 48(5): 492-497.
  • Xulu, N. G., Chikoore, H., Bopape, M. J. M. and Nethengwe, N. S. 2020. Climatology of the Mascarene High and its influence on weather and climate over Southern Africa. Climate, 8(7): 86. DOI: 10.3390/cli8070086
  • Yadav, R. K., Kumar, K. R. and Rajeevan, M. 2009. Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over northwest India winter precipitation. J. Geophys. Res. Atmos., 114: D12112 (pp. 1-12). DOI: 10.1029/2008JD011318.
  • Yan, X. H., Boyer, T., Trenberth, K., Karl, T. R., Xie, S. P., Nieves, V., Tung, K. K. and Roemmich, D. 2016. The global warming hiatus: slowdown or redistribution? Earth’s Future, 4(11): 472-482.

Abstract Views: 231

PDF Views: 0




  • Evolution in Relationship Between Mascarene Highs and Indian Summer Monsoon In Recent Times

Abstract Views: 231  |  PDF Views: 0

Authors

Vineet Sharma
Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India
Amarjeet
Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India
Arun Chakraborty
Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India
Abhishek Kumar
Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India
Biplab Sadhukhan
Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India
Swarnali Dhar
Centre for Ocean, River, Atmosphere & Land Sciences (CORAL), IIT Kharagpur, West Bengal, India., India

Abstract


Mascarene Highs (MH) is an important semi-permanent feature of Indian summer Monsoon(ISM). It is a subtropical anticyclonic feature located in the Southern Indian Ocean. The relationship between ISMR and Mascarenes highs is quite complex and is attributed to thermal and pressure gradients developed between the two regions (particularly during JJAS season) developed due to differential heating of land and water in the two regions. Global warming hiatus (comparative cooling of ocean waters in western Pacific) post 1998 have led to redistribution of thermal energy across the Indonesian through flow to the Indian ocean as a result the region has experienced rising SSTs. Declining Mean Sea Level Pressure (MSLP), rising SST and latitudinal and longitudinal shifts in the mean annual location of the centre of MH have led to reconfiguration of the relationship of Mascarene High with Indian Summer Monsoon. This changing relationship may be considered as one of many factors controlling recent revival/strengthening of Indian Summer Monsoon in recent times.

Keywords


Mascarene Highs (MH), Anticyclone, Global Warming Hiatus, Indian Summer Monsoon (ISM).

References