Open Access
Subscription Access
Open Access
Subscription Access
Integral Closure of Noetherian Domains and Intersections of Rees Valuation Rings, (I)
Subscribe/Renew Journal
It is shown that the integral closure R' of a local (Noetherian) domain R is equal to the intersection of the Rees valuation rings of all proper ideals in R of the form (b, Ik)R, where b is an arbitrary nonzero nonunit in R and the Ik are an arbitrary descending sequence of ideals (varying with b and with Ik ⊆ (Ik-1 ∩ I1k) for all k > 1, one sequence for each b). Also, this continues to hold when b is restricted to being irreducible and no two distinct b are associates. We prove similar results for a Noetherian domain.
Keywords
Integral Closure, Noetherian Domain, Local Domain, Rees Valuation Ring.
Subscription
Login to verify subscription
User
Font Size
Information
- M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Co., Reading, MA 1969.
- W. J. Heinzer, L. J. Ratli , Jr., and D. E. Rush, Bases of ideals and Rees valuation rings, J. Algebra 323 (2010), 839-853.
- I. N. Herstein, Topics in Algebra, Cisdell Publishing Co., New York, 1964.
- I. Kaplansky, Commutative Rings, Allyn and Bacon, Boston, 1970.
- H. Matsumura, Commutative Algebra, W. A. Benjamin, NY, 1970.
- M. Nagata, Local Rings, Interscience, John Wiley, New York, 1962.
- L. J. Ratli , Jr., Note on analytically unrami ed semi-local rings, Proc. Amer. Math. Soc. 17 (1966), 274-279.
- L. J. Ratli , Jr., On prime divisors of the integral closure of a principal ideal, J. Reine Angew. Math. 255 (1972), 210-220.
- D. Rees, Valuations associated with ideals (II), J. London Math. Soc. 36 (1956), 221-228.
- I. Swanson and C. Huneke, Integral Closure of Ideals, Rings and Modules, Cambridge Univ. Press, Cambridge, 2006.
Abstract Views: 321
PDF Views: 1