Open Access
Subscription Access
Open Access
Subscription Access
Fixed Point Theorems for Faintly Compatible Mappings in Intuitionistic Fuzzy Metric Space
Subscribe/Renew Journal
In this paper, we correct the contractive condition of Manro and Kang [16] and prove some common fixed point theorems for four faintly compatible mappings using subsequential continuous mappings in Intuitionistic Fuzzy metric spaces. We also provide an example in support of our main result. Our results improve and generalize the results of Manro and Kang [16].
Keywords
Intuitionistic Fuzzy Metric Space, Faintly Compatible Mappings, Subsequential Continuous Mappings and Property E.A.
Subscription
Login to verify subscription
User
Font Size
Information
- R. P. Agarwal, R. K. Bisht and N. Shahzad, A comparison of various noncommuting condi- tions in metric xed point theory and their applications, Fixed Point Theory and Applica- tions, 38 (2014), 1-33.
- C. Alaca, D. Turkoglu and C. Yildiz, Fixed points in intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, 29(5) (2006), 1073-1078.
- M. A. Alghamdi, S. Radenovic and N. Shahzad, On Some Generalizations of Commuting Mappings, Abstract and Applied Analysis, Article ID 952052, (2011), 1-6.
- M. A. Al-Thaga , N. Shahzad, Generalized I-nonexpansive selfmaps and invariant approxi- mations, Acta Math. Sin., 24 (2008), 867-876.
- K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- R. K. Bisht and N. Shahzad, Faintly compatible mappings and common xed points, Fixed Point Theory App., (2013), 2013:156, 1-9.
- S. Chauhan, S. Radenovic, and S. Bhatnagar, Common xed point theorems for weakly com- patible mappings in fuzzy metric spaces, Le Mathematiche LXVIII (2013)-Fasc., I, 87-98.
- S. Chauhan, S. Radenovic, M. Imdad, and C. Vetro, Some integral type xed point theorems in non-archimedean menger PM-spaces with common property (E.A) and applications of functional equations in dynamic programming, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (RACSAM), (2014), 795-810.
- S. Chauhan, W. Shatanawi, S. Kumarc and S. Radenovi, Existence and uniqueness of xed points in modi ed intuitionistic fuzzy metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 28-41.
- D. Doric, Z. Kadelburg and S. Radenovic, A note on occasionally weakly compatible mappings and common xed points, Fixed Point Theory, 13(2) (2012), 475-480.
- G. Jungck, Common xed points for noncontinuous nonself maps on nonmetric spaces, Far East J. Math. Sci., 4 (1996), 199-215.
- G. Jungck, Compatible mappings and common xed points, Internat. J. Math. & Math. Sci., 9(4) (1986), 771-779.
- Z. Kadelburg, S. Radenovic, and N. Shahzad, A note on various classes of compatible-type pairs of mappings and common xed point theorems, Abstract and Applied Analysis, Article ID 697151, (2013), 1-6.
- I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11(5) (1975), 326-334.
- S. Manro, H. Bouharjera and S. Singh, A common xed point theorem in Intuitionistic Fuzzy metric Space by using Sub-Compatible maps, Int. J. Contemp. Math. Sci., 5(55) (2010), 2699-2707.
- S. Manro and S. M. Kang, Common Fixed Point Theorems For Four Mappings in Intuition- istic Fuzzy Metric Spaces, Int. J. of Pure and App. Math., 91(2) (2014), 253-264.
- R. P. Pant and R. K. Bisht, Occasionally weakly compatible mappings and xed points, Bull. Belg. Math. Soc. Simon Stevin, 19 (2012), 655-661.
- V. Pant and R. P. Pant, Fixed points in fuzzy metric space for non compatible maps, Soochow J. of Math., 33(4) (2007), 647-655.
- B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North Holland, Amsterdam, 1983.
- L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
Abstract Views: 320
PDF Views: 0