Open Access
Subscription Access
Open Access
Subscription Access
A Note on Generalized Commutators
Subscribe/Renew Journal
An Operator T on a Hilbert space H is said to be positive semidefinite (negative semi definite) if (Tx, x) ≥ 0 ((Tx, x) ≤ 0 ) ∀ x ∈ H . T is said to be semidefinite if it is either positive semidefinite or negative semidefinite. If (Tx, x) > 0((Tx, x) < 0) ∀ x ∈ H, then T is called positive definite (negative definite). T is defined to be definite if it is either positive definite or negative definite.
Subscription
Login to verify subscription
User
Font Size
Information
Abstract Views: 237
PDF Views: 0