Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Linear Difference Equations Associated with Certain Special Functions


Affiliations
1 Calcutta University, India
     

   Subscribe/Renew Journal


The functional equation

(n-1)fn+1(z) + (n + l)fn-1(z)-2/z(n2-1)fn(z)=0     (1)

can be transformed into the form

φn+1(Z)+ φn-1(Z) = 2n/zφ n( Z )     (2)

by the substitution

fn(Z) = nφn(z).   (3)


Subscription Login to verify subscription
User
Notifications
Font Size


Abstract Views: 214

PDF Views: 0




  • Linear Difference Equations Associated with Certain Special Functions

Abstract Views: 214  |  PDF Views: 0

Authors

Hari Das Bagchi
Calcutta University, India
Phatik Chand Chatterjee
Calcutta University, India

Abstract


The functional equation

(n-1)fn+1(z) + (n + l)fn-1(z)-2/z(n2-1)fn(z)=0     (1)

can be transformed into the form

φn+1(Z)+ φn-1(Z) = 2n/zφ n( Z )     (2)

by the substitution

fn(Z) = nφn(z).   (3)