Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

The Lower Order of the Zeros of an Integral Function


Affiliations
1 Aligarh, India
     

   Subscribe/Renew Journal


Let f(z) be an integral function of finite order ρ. We write

f(z)=ZkeQ(z)P(Z),

where Q(z) is a polynomial of degree q and P(Z) a canonical product of order ρ1.


Subscription Login to verify subscription
User
Notifications
Font Size


Abstract Views: 236

PDF Views: 0




  • The Lower Order of the Zeros of an Integral Function

Abstract Views: 236  |  PDF Views: 0

Authors

S. M. Shah
Aligarh, India

Abstract


Let f(z) be an integral function of finite order ρ. We write

f(z)=ZkeQ(z)P(Z),

where Q(z) is a polynomial of degree q and P(Z) a canonical product of order ρ1.