Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

On the Diophantine Equation X2 + 13K = YN


Affiliations
1 A.T.N. Laboratory, USTHB University Algiers, Algeria
     

   Subscribe/Renew Journal


The object of this paper is to find all solutions of the dio-phantine equation x2 + 13k = yn, in positive integers x, y with n ≥ 3.

Keywords

Primitive Divisor Theorem of Carmicheal, Theorem of Catalan, Nagell Equation
Subscription Login to verify subscription
User
Notifications
Font Size


  • F.S. Abu Muriefah, F. Luca, A. Togbe, On the Diophantine equation x2 + 5a13b = yn, Glasgow Math. J. 50 (2008), 175-181.
  • S.A. Arif and F. S. Abu Muriefah, On the Diophantine equation x2 + q2k+1 = yn, The Arabian J. for Sci. and Engineering, 26(1A), 53-62, 2001.
  • S.A. Arif and F.S. Abu Muriefah, On the Diophantine equation x2 + q2k = yn, Journal of Number Theory, 95(1), 95-100, 2002.
  • A. Berczes, I. Pink, On the Diophantine equation x2 +p2k = yn, Arch. Math. 91 (2008) 505-517.
  • Y.F. Bilu, G. Hanrot, P.M. Voutier, Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math., 539, 75-122, 2001.
  • Y. Bugeaud, F. Luca, M. Mignotte, S. Siksek, Almost Powers in the Lucas Sequence. Journal de Theorie des Nombres de Bordeaux. 20 (2008), no 3, 555-600.
  • H. Cohen, Explicit Methods for Solving Diophantine Equations. Tucson, Arizona Winter School, 2006.
  • J.H.E. Cohn, The Diophantine equation x2 + C = yn, Acta Arith. 65 (1993), No.4, 367-381.
  • J.H.E. Cohn, The Diophantine equation x2+C = yn, Acta Arith., 65(4), 367-381, 1995.
  • E. Goins, F. Luca, A. Togbe, On the Diophantine equation x2 + 2α5β13γ = yn, ANTS VIII Proceedings: A. J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011 (2008), 430-442.
  • Hui Lin Zhu, Mao Hua Lec, On some generalized Lebesgue-Nagell equations. Journal of Number Theory 131 (2011) 458-469.
  • F. Luca, On the Equation x2 +2a3b = yn, Int. J. Math. Math. Sci. 29.4 (2002) 239-244
  • F. Luca, A. Togbe, On the Diophantine equation x2 +72k = yn, Fibonacci Quart., no. 4, 322-326 (2008).
  • F. Luca, Eective methods for Diophantine equations, Universidad Nacional Autonoma de Mexico (2009)
  • T. Nagell, Contributions to the theory of a category of Diophantine equations of the second degree with two unknown, Nova Acta Reg. Soc. Upsal. Ser. 4 (1955), no.16, 1-38.
  • S. Siksek, J.E. Cremona, On the Diophantine equation x2 + 7 = ym, Acta Arith. 109 (2) (2003) 143-149.
  • L. Tao, On the Diophantine equation x2 + 5m = yn, Ramanujan J. 19 (2009) 325-338.

Abstract Views: 386

PDF Views: 1




  • On the Diophantine Equation X2 + 13K = YN

Abstract Views: 386  |  PDF Views: 1

Authors

Abdelkader Hamtat
A.T.N. Laboratory, USTHB University Algiers, Algeria
Djilali Behloul
A.T.N. Laboratory, USTHB University Algiers, Algeria

Abstract


The object of this paper is to find all solutions of the dio-phantine equation x2 + 13k = yn, in positive integers x, y with n ≥ 3.

Keywords


Primitive Divisor Theorem of Carmicheal, Theorem of Catalan, Nagell Equation

References