Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

An Inequality for the Arithmetical Function g(x)


Affiliations
1 Muslim University, Aligarh, India
     

   Subscribe/Renew Journal


Let n = a1 + a2 + .......... + ap, and f(n) the maximum of the least common multiple of a1, a2, .. ., ap for all such positive a's. Landau has proved that if log f(x)=g(x), then

lim g(x)/(x logx)1/2 = 1.                                         (1)

Let p denote a prime number.


Subscription Login to verify subscription
User
Notifications
Font Size


Abstract Views: 247

PDF Views: 0




  • An Inequality for the Arithmetical Function g(x)

Abstract Views: 247  |  PDF Views: 0

Authors

S. M. Shah
Muslim University, Aligarh, India

Abstract


Let n = a1 + a2 + .......... + ap, and f(n) the maximum of the least common multiple of a1, a2, .. ., ap for all such positive a's. Landau has proved that if log f(x)=g(x), then

lim g(x)/(x logx)1/2 = 1.                                         (1)

Let p denote a prime number.