Open Access
Subscription Access
Open Access
Subscription Access
Generalisation of Jacobi's θ-Function Formulae
Subscribe/Renew Journal
Jacobi's well known formulae on the multiplication of θ-functions can be generalised by making use of general orthogonal linear substitution. The generalised theorem runs as follows:-
If variables (l, m, n,...... p) and (l1, m1, n1,..... p1) are connected by means of the relations
(i){a11l+a12m+........a1p P = a1ll1+a21m1+.......ap1
a2ll+a22m+ ...,...a2p P = a12l1+a22m1+......ap2P1
...........................................................................
............................................................................
ap1l+ap2m+.........app P=a1pl1+a2pm1+......appP1
where aik=-aki.
Subscription
Login to verify subscription
User
Font Size
Information
Abstract Views: 217
PDF Views: 1