





On Nagata's Result about Height One Maximal Ideals and Depth One Minimal Prime Ideals (I)
Subscribe/Renew Journal
It is shown that, for all local rings (R,M), there is a canonical bijection between the set DO(R) of depth one minimal prime ideals ω in the completion ^R of R and the set HO(R/Z) of height one maximal ideals ̅M' in the integral closure (R/Z)' of R/Z, where Z := Rad(R). Moreover, for the finite sets D := {V*/V* := (^R/ω)', ω ∈ DO(R)} and H := {V/V := (R/Z)'̅M', ̅M' ∈ HO(R/Z)}:
(a) The elements in D and H are discrete Noetherian valuation rings.
(b) D = {^V ∈ H}.
Keywords
Integral Closure, Completion of a Local Ring, Depth One Minimal Prime Ideal, Height One Maximal Ideal.
Subscription
Login to verify subscription
User
Font Size
Information