Open Access
Subscription Access
Open Access
Subscription Access
New Classes of Statistically Pre-Cauchy Triple Sequences of Fuzzy Numbers Defined by Orlicz Function
Subscribe/Renew Journal
In this article, the concept of statistically pre-Cauchy sequence of fuzzy real numbers having multiplicity greater than two defined by Orlicz function is introduced. A characterization of the class of bounded statistically pre-Cauchy triple sequences of fuzzy numbers with the help of Orlicz function is presented. Then a necessary and suffcient condition for a bounded triple sequence of fuzzy real numbers to be statistically pre-Cauchy is proved. Also a necessary and sufficient condition for a bounded triple sequence of fuzzy real numbers to be statistically convergent is derived. Further, a characterization of the class of bounded statistically convergent triple sequences of fuzzy numbers is presented and linked with Cesaro summability.
Keywords
Triple Sequence of Fuzzy Numbers, Statistical Convergence, Statistically Pre-Cauchy Triple Sequence, Orlicz Function, Cesaro Summability.
Subscription
Login to verify subscription
User
Font Size
Information
- R. P. Agnew, On summability of multiple sequences, American Journal of Mathematics, 1(4) (1934), 62-68.
- J. S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8 (1988), 47-63.
- J.S. Connor, J. Fridy, J. Kline, Statistically pre-Cauchy sequences, Analysis, 14 (1994), 311-317.
- A. Dutta, A. Esi, and B. C. Tripathy, On lacunary p-absolutely summable fuzzy realvalued double sequence space, Demonstratio Mathematica, 47(3) (2014), 652-661.
- B. C. Tripathy and A. J. Dutta, Statistically pre-Cauchy Fuzzy real-valued sequences defined by Orlicz function, Proyecciones Journal of Mathematics, 33(3) (2014), 235-243.
- H. Dutta, A Characterization of the Class of Statistically pre-Cauchy Double Sequences of Fuzzy Numbers, Appl. Math. Inf. Sci., 7(4) (2013), 1437-1440.
- A. Esi, Statistical convergence of triple sequences in topological groups, Annals of the University of Craiova, Mathematics and Computer Science Series, 40(1) (2013), 29-33.
- A. Esi, 3-Statistical convergence of triple sequences on probabilistic normed space, Global Journal of Mathematical Analysis, 1(2) (2013), 29-36.
- H. Fast, Surla convergence statistique, Colloq. Math., 2 (1951), 241-244.
- J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.
- V. A. Khan, Q. M. Danish Lohani, Statistically pre-Cauchy sequences and Orlicz functions, Southeast Asian Bull. Math., 31 (2007), 1107-1112.
- P. Kumar, V. Kumar, S. S. Bhatia, Multiple sequence of Fuzzy numbers and their statistical convergence, Mathematical Sciences, Springer, 6(2) (2012), 1-7.
- J. S. Kwon, On statistical and p-Cesaro convergence of fuzzy numbers, Korean J. Comput. Appl. Math., 7 (2000), 195-203.
- J. Lindenstrauss, L. Tzari, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- I. J. Maddox, A tauberian condition for statistical convergence, Math. Proc. Camb. PhilSoc., 106 (1989), 272-280.
- M. Matloka, Sequences of fuzzy numbers, BUSEFAL, 28 (1986), 28-37.
- F. Moricz, Statistical convergence of multiple sequences, Arch. Math., 81 (2003), 8289.
- S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets and Systems, 33 (1989), 123-126.
- M. Nath, S. Roy, Some new classes of ideal convergent difference multiple sequences of fuzzy real numbers, Journal of Intelligent and Fuzzy systems, 31(3) (2016), 1579-1584.
- F, Nuray, E. Savas, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca, 45 (1995), 269273.
- S. D. Parashar, B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure. Appl. Math., 25 (1994), 419-428.
- A. ahiner, M. Grdal, F. K. Dden, Triple sequences and their statistical convergence, Seluk J. Appl. Math., 8(2) (2007), 49-55.
- A. Sahiner, B. C. Tripathy, Some I -related Properties of Triple Sequences, Selcuk J. Appl. Math., 9(2) (2008), 9-18.
- T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30 (1980), 139-150.
- E. Savas, On statistically convergent sequences of fuzzy numbers, Inform. Sci., 137(1-4) (2001), 277-282.
- E. Savas, A. Esi, Statistical convergence of triple sequences on probabilistic normed Space, Annals of the University of Craiova, Mathematics and Computer Science Series, 39(2) (2012), 226-236.
- M Sen, S. Roy, Some I-convergent double classes of sequences of Fuzzy numbers dened by Orlicz functions, Thai Journal of Mathematics, 11(1) (2013), 111120.
- P. V. Subrahmanyam, Cesaro summability of fuzzy real numbers, J. Analysis, 7 (1999), 159-168.
- B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34(3) (2003), 231-237.
- B.C. Tripathy and A.J. Dutta, Bounded variation double sequence space of fuzzy real numbers, Comput Math. Appl., 59(2) (2010), 1031-1037.
- B.C. Tripathy and A. J. Dutta, On fuzzy real-valued double sequence spaces 2lPF, Math. Computer Modell., 46(9-10) (2007), 1294-1299.
- B. C. Tripathy, A. J. Dutta, Statistically convergence triple sequence spaces dened by Orlicz function, Journal of Mathematical Analysis, 4(2) (2013), 16-22.
- Authors, Papaer title, Journal name, volume no. (year), pages. [33] B. C. Tripathy, R. Goswami, On triple dierence sequences of real numbers in probabilistic normed spaces, Proyecciones Journal of Mathematics; 33(2), 157-174, (2014).
- B.C. Tripathy and B. Sarma, Double sequence spaces of fuzzy numbers dened by Orlicz function, Acta Math. Scientia, 31B(1) (2011), 134-140.
- B. C. Tripathy, M. Sen, On generalized statistically convergent sequences, Indian Jour. Pure Appl. Math., 32(11) (2001), 1689-1694.
- L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338-353.
Abstract Views: 355
PDF Views: 3