Open Access
Subscription Access
Open Access
Subscription Access
Weighted β−absolute Convergence of Single and Double Walsh−Fourier Series of Functions of Φ − ∧ −BV
Subscribe/Renew Journal
For one variable function of Φ − ∧−bounded variation on [0,1] the sufficient condition for the weighted β−absolute convergence of its Walsh−Fourier series ∑m γm| ˆ f(m)|β, where 0 < β < 2 and {γm} is a weighted sequence, is obtained and is extended for two dimensional analogue.
Keywords
Absolute Convergence, Walsh−Fourier Series, Functions of φ − ∧−Bounded Variation.
Subscription
Login to verify subscription
User
Font Size
Information
- Darji, K. N. and Vyas, R. G., A note on Walsh−Fourier coefficients, Bull. Math. Anal. Appl., 4 (2) (2012), 116−119.
- Darji, K. N. and Vyas, R. G., On absolute convergence of double Walsh−Fourier series, Indian J. Math., 60 (1) (2018), 45−65.
- Gogoladze, L. and Meskhia, R., On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst., 141 (2006), 29−40.
- Golubov, B., Efimov, A. and Skvortsov, V., Walsh Series and Transforms: Theory and Applications, Springer Science+Business Media Dordrecht, 1991.
- McLaughlin, J. R., Absolute convergence of series of Fourier coefficients, Trans. Amer. Math. Soc., 184 (1973), 291−316.
- M´oricz, F., Absolute convergence of Walsh−Fourier series and related results, Anal. Math., 36 (4) (2010), 275−286.
- M´oricz, F. and Veres, A., Absolute convergence of double Walsh−Fourier series and related results, Acta Math. Hungar., 131 (1) (2011), 122−137.
- M´oricz, F. and Veres, A., Absolute convergence of multiple Fourier series revisited, Anal. Math., 34 (2) (2008), 145−162.
- U´lyanov, P. L., Series with respect to a Haar system with monotone coefficients (in Russian), Izv. Akad. Nauk. SSSR Ser. Mat., 28 (1964), 925−950.
- Vyas, R. G., On the absolute convergence of Fourier series of functions of ΛBV (p) and ϕΛBV , Georgian Math. J., 14 (4) (2007), 769−774.
- Vyas, R. G. and Darji, K. N., On absolute convergence of multiple Fourier series, Math. Notes, 94 (1) (2013), 71−81; Russian transl., Mat. Zametki, 94 (1) (2013), 81−93.
- Vyas, R. G. and Darji, K. N., On multiple Fourier coefficients of functions of φ − Λ−bounded variation, Math. Inequal. Appl., 17 (3) (2014), 1153-1160.
- Vyas, R. G. and Darji, K. N., On multiple Walsh−Fourier coefficients of functions of φ − Λ−bounded variation, Arab. J. Math., 5 (2) (2016), 117−123.
- Waterman, D., On convergence of Fourier series of functions of generalized bounded variation, Studia Math., 44 (1972), 107−117.
Abstract Views: 398
PDF Views: 5