Open Access
Subscription Access
Open Access
Subscription Access
Some Results on the Extended Hypergeometric Function
Subscribe/Renew Journal
An attempt is made to define the extended Pochhammer symbol (λ)n,a which leads to an extension of the classical hypergeometric functions. Differential equations and some properties have also been discussed.
Keywords
Gamma Function, Pochhammer Symbols, Hypergeometric Functions, Modified Fractional Calculus.
Subscription
Login to verify subscription
User
Font Size
Information
- A. Erd´elyi, W. Mangus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions,Vol. 1, McGraw-Hill, New York, 1953.
- R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
- G. Jumarie, Modified Riemann-Liouville derivative and fractional Taylor series of non-differentiable functions further results, Comput. Math. Appl., 51(2006), 1367-1376.
- G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions, Appl. Math. Lett., 22 (2009), 378-385.
- G. Jumarie, Laplace’s transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative, Appl. Math. Lett., 22 (2009), 1659-1664.
- G. Jumarie, Cauchy’s integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order, Appl. Math. Lett., 23 (2010), 1444-1450.
- G. Jumarie, Fractional Euler’s integral of first and second kinds. Application to fractional Hermite’s polynomials and to probability density of fractional order, J. Appl. Math. & Informatics, 28(2010), 257-273.
- G. Jumarie, On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling, Cent. Eur. J. Phys., 11(2013), 617-633.
- G. Jumarie, The Leibniz rule for fractional derivatives holds with nondifferentiable functions, Mathematics and Statistics, 1(2013), 50-52.
- E. D. Rainville, Special Functions, The Macmillan Company, New York, 1960.
- L. J. Slater, Generalized hypergeometric functions, New York, Cambridge University Press, 1966.
Abstract Views: 352
PDF Views: 1