Open Access
Subscription Access
Open Access
Subscription Access
A Representation Theorem for Generic Line Arrangements in the Plane
Subscribe/Renew Journal
In this article, we prove a representation theorem that any generic line arrangement in the plane over an ordered field can be represented isomorphically by a very generic line arrangement in the sense of C. A. Athanasiadis [2] with a given set of distinct slopes of the same cardinality.
Keywords
Ordered Fields, Line Arrangements in the Plane, Combinatorial Cycle Invariants, Elementary Collineation Transformation, Global Cyclicity, Concurrency Arrangement.
Subscription
Login to verify subscription
User
Font Size
Information
- M. Aigner and G. M. Ziegler, Proofs from THE BOOK, Springer, Berlin, 2018. viii+326 pp, ISBN-13: 978-3-662-57264-1; 978-3-662-57265-8, https://doi.org/10.1007/ 978-3-662-44205-0, MR3823190
- C. A. Athanasiadis, The largest intersection lattice of a discriminantal arrangement, Beitr¨age zur Algebra und Geometrie, Contributions to Algebra and Geometry, Vol. 40(2) (1999), 283–289, https://www.emis.de/journals/BAG/vol.40/no.2/1.html, MR1720104
- J. E. Goodman and R. Pollack, On the Combinatorial Classification of Non-degenerate Configurations in the Plane, Journal of Combinatorial Theory Series A. 29(2), (1980), 220–235, ISSN 0097-3165, https://doi.org/10.1016/0097-3165(80)90011-4, MR0583961
- B. Gr¨unbaum, Arrangements and Spreads, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 10. American Mathematical Society Providence, R.I., 1972. iv+114 pp, ISBN-13: 978-0-8218-1659-2, https://bookstore.ams.org/cbms-10, MR0307027
- B. Gr¨unbaum, Convex Polytopes, Second Edition, Graduate Texts in Mathematics, 221, Springer-Verlag, New York, 2003. xvi+468 pp. ISBN-13: 978-0-387-40409-7, https:// doi.org/10.1007/978-1-4613-0019-9, MR1976856
- N. Jacobson, Basic Algebra I, Dover Books on Mathematics, Second Edition, 2009, ISBN13: 978-0-486-47189-1, Unabridged republication originally published by W. H. Freeman and Co., San Francisco, 1985, xviii+499 pp, MR0780184
- N. Jacobson, Basic Algebra II, Dover Books on Mathematics, Second Edition, 2009, ISBN13: 978-0-486-47187-7, Unabridged republication originally published by W. H. Freeman and Co., San Francisco, 1989, xviii+686 pp, MR1009787
- S. Lang, Algebra, Third Edition, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, xvi+914 pp, ISBN-13: 978-0-387-95385-4, https://doi.org/10.1007/ 978-1-4613-0041-0, MR1878556
- R. P. Stanley, An introduction to hyperplane arrangements in Geometric Combinatorics, 389–496, IAS/Park City Math. Ser., 13, American Mathematical Society, Providence, R.I., 2007, ISBN-13: 978-0-8218-3736-8, https://bookstore.ams.org/pcms-13, MR2383131
Abstract Views: 367
PDF Views: 1