Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

2-Absorbing Primary Subsemimodules Over Partial Semirings


Affiliations
1 Department of Basic Science and Humanities, Narasaraopet Engineering College, Narasaraopet - 522601, Andhra Pradesh, India
2 Department of Science and Humanities, ANU College of Engineering, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur - 522510, Andhra Pradesh, India
3 Department of Basic Engineering, DVR and Dr. HS MIC College of Technology, Kanchikacherla - 521180, Andhra Pradesh, India
     

   Subscribe/Renew Journal


A partial semiring is a structure possessing an infinitary partial addition and a binary multiplication, subject to a set of axioms. The partial functions under disjoint-domain sums and functional compo- sition is a partial semiring. In this paper we obtain the characteristics of 2-absorbing primary subsemimodules and weakly 2-absorbing primary subsemimodules in partial semirings.

Keywords

Semimodule, 2-absorbing primary subsemimodule, weakly 2-absorbing primary subsemimodule, commutative partial semiring
Subscription Login to verify subscription
User
Notifications
Font Size


  • G. V. S. Acharyulu, Matrix representable So-rings, Semigroup Forum, Springer-Verlag, 46 (1993), 31-47. (DOI: 10.1007/BF02573542)
  • D. D. Anderson and A. R. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra, 39(5) (2011), 1646-1672. (DOI: 10.1080/00927871003738998)
  • M. A. Arbib & E. G. Manes, Partially Additive Categories and Flow-diagram Semantics, J. Algebra, 62. (1980), 203-227.
  • A. R. Badawi, On 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75(3). (2007), 417-429.
  • A. R. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc., 51(4). (2014), 1163 - 1173. (DOI: 10.4134/BKMS.2014.51.4.1163)
  • A.R. Badawi, U. Tekir and E. Yetkin, On weakly 2-absorbing primary ideals of commutative rings, J. Korean Math. Soc., 52(1). (2015), 97-111. (DOI: 10.4134/JKMS.2015.52.1.097)
  • E. G. Manes and D. B. Benson, The Inverse Semigroup of a Sum-Ordered Partial Semirings, Semigroup Forum, 31. (1985), 129-152. (DOI: 10.1007/BF02572645)
  • N. Ravi Babu, T. V. Pradeep Kumar and P.V. Srinivasa Rao, 2-absorbing primary ideals of so-rings, Jordan J. Math. Stat., 11(3) (2018), 229-241.
  • P. V. Srinivasa Rao and M. Siva Mala, Primary subsemimodules of Partial Semimodules, Advances in Algebra, 5(3) (2012), 125-133.
  • P.V. Srinivasa Rao, Ideal Theory of Sum-ordered Partial Semirings, Doctoral thesis, Acharya Nagarjuna University, 2011.
  • M. Srinivasa Reddy, V. Amarendra Babu and P. V. Srinivasa Rao, 2-absorbing Subsemimodules of Partial Semimodules, Gen.Math.Notes, 23(2). (2014), 43-50.
  • M. E. Streenstrup, Sum-ordered Partial Semirings, Doctoral thesis, Graduate school of the University of Massachusetts, 1985.

Abstract Views: 418

PDF Views: 0




  • 2-Absorbing Primary Subsemimodules Over Partial Semirings

Abstract Views: 418  |  PDF Views: 0

Authors

N. Ravi Babu
Department of Basic Science and Humanities, Narasaraopet Engineering College, Narasaraopet - 522601, Andhra Pradesh, India
T. V. Pradeep Kumar
Department of Science and Humanities, ANU College of Engineering, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur - 522510, Andhra Pradesh, India
P. V. Srinivasa Rao
Department of Basic Engineering, DVR and Dr. HS MIC College of Technology, Kanchikacherla - 521180, Andhra Pradesh, India

Abstract


A partial semiring is a structure possessing an infinitary partial addition and a binary multiplication, subject to a set of axioms. The partial functions under disjoint-domain sums and functional compo- sition is a partial semiring. In this paper we obtain the characteristics of 2-absorbing primary subsemimodules and weakly 2-absorbing primary subsemimodules in partial semirings.

Keywords


Semimodule, 2-absorbing primary subsemimodule, weakly 2-absorbing primary subsemimodule, commutative partial semiring

References





DOI: https://doi.org/10.18311/jims%2F2021%2F26057