Open Access
Subscription Access
Open Access
Subscription Access
On α-prime Ideals in the Semiring of Non-Negative Integers
Subscribe/Renew Journal
Characterizations of α-prime ideals in the semiring of non- negative integers are investigated.
Keywords
Principal ideal, Prime ideal, α-prime ideal
Subscription
Login to verify subscription
User
Font Size
Information
- P. J. Allen and L. Dale, Ideal theory in the semiring Z+ 0 , Publ. Math. Debrecen, 22 (1975), 219 - 224.
- Ayman Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc., 75 (2007), 417 - 429.
- J. N. Chaudhari, 2-absorbing ideals in the semiring of non-negative integers, J. Indian Math. Soc., 80 (3-4) (2013), 235 - 241.
- J. N. Chaudhari, 2-absorbing ideals in semirings, Int. J. Algebra, 6 (2012), 265 - 270.
- J. N. Chaudhari and V. Gupta, Weak primary decomposition theorem for right Noe- therian semirings, Indian J. Pure Appl. Math., 25 (6) (1994), 647 - 654.
- J. N. Chaudhari and K. J. Ingale, A note on the ideal of the semiring Z+ 0 , J. Indian Math. Soc., 79 (2012), 33 - 39.
- Ahmad Yousefian Darani, On 2-Absorbing and Weakly 2-Absorbing Ideals of Commu- tative Semirings, Kyungpook Math. J., 52 (2012), 91 - 97.
- J. S. Golan, Semirings and their applications, Kluwer Academic Publishers, Dordrecht, 1999.
- Vishnu Gupta and J. N. Chaudhari, Some remarks on semirings, Radovi Mathematicki, 12 (2003), 13 - 18.
- Vishnu Gupta and J. N. Chaudhari, Prime ideals in semirings, Bull. Malays. Math. Sci. Soc., 34 (2) (2011), 417{421.
- Thawatchai Khumprapussorn, On -prime and weakly -prime submodules, European J. Pure and Appl. Math., 3 (2018) 730 - 739.
- H. S. Vandiver, Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Amer. Math. Soc., 40 (1934), 914 - 920.
Abstract Views: 465
PDF Views: 0