Open Access
Subscription Access
Open Access
Subscription Access
Note on the pRq(α; β; z) Function
Subscribe/Renew Journal
The aim of this paper is to give some convergence conditions of the pRq(α; β; z) function. We also derive the integral representation of the function pRq(α; β; z) in the form of Mellin-Barnes Integral including its analytic property.
Keywords
Mellin{Barnes Integral, Mittag{Leer function, hypergeometric function, Wright functions
Subscription
Login to verify subscription
User
Font Size
Information
- G. E. Andrew, R. Askey and R. Roy, Special Functions (Encyclopedia of Mathematics and its Applications), Cambridge University Press, UK, 1999.
- H. Bateman, Higher Transcendental Functions Vol. 3, McGraw-Hill, New York 1955.
- R. Desai and A. K. Shukla, Some results on function pRq(α; β; z), J. Math. Anal. Appl., 448(1)(2017), 187-197.
- C. Fox, The G and H functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc. 98(3)(1961), 395-429.
- R. Goren o, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014.
- A. A. Kilbas, M. Saigo and J. J. Trujillo,On the generalized Wright function, Fract. Calc. Appl. Anal.,5(4)(2002), 437-460.
- A. M. Mathai and H. J. Haubold, Special Functions for Applied Scientists, Springer, New York, 2008.
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Di erential Equations, John Wiley and Sons, New York, 1993.
- G. M. Mittag{Leer, Sur la nouvelle fonction E (x), CR Acad Sci Paris, 137(1903), 554-558.
- E. D. Rainville, Special Functions, Mcmillan, New York, 1960.
- T. O. Salim, Some properties relating to the generalized Mittag-Leer function, Adv. Appl. Math. Anal., 4(1)(2009), 21-30.
- M. Shahed and A. Salem, An Extension of Wright function and its properties, J. Math., 2015, (2015)
- M. Sharma and R. Jain, A note on a generalized M-series as a special function of fractional calculus, Fract. Calc. Appl. Anal. 12(4)(2009), 449-452.
- G. N. Watson, A Treatise on The Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995.
- E. M. Wright, On the coecient of power series having exponential singularities, J. London Math. Soc. 5(1933), 71-79.
Abstract Views: 487
PDF Views: 0