Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

A Lusternik-Schnirelmann Type Theorem for C1-Frechet Manifolds


Affiliations
1 Institute of Mathematics of NAS of Ukraine, Topology Lab, Kyiv, Ukraine
2 National Aviation University, Higher Mathematics Department, Kyiv, Ukraine
     

   Subscribe/Renew Journal


We prove a Lusternik-Schnirelmann type theorem for a C1- function φ : M → R, where M is a connected infinite dimensional Frechet manifold of class C1. To this end, in this context we prove the so-called Deformation Lemma and by using it we derive the result generalizing the Minimax Principle.

Keywords

Lusternik-Schnirelmann Theorem, Frechet Finsler Manifolds, Deformation Lemma
Subscription Login to verify subscription
User
Notifications
Font Size


  • F. E. Browder, Nonlinear Eigenvalue Problems and Group Invariance, In: Browder F. E. (eds) Functional Analysis and Related Fields (1970), 1 - 58.
  • N. Ghoussoub, A Min-Max principle with a relaxed boundary condition, Proc. Amer. Math. Soc., 117 (2)(1993), 439 - 447.
  • J. Milnor, Morse theory, Princeton University Press, 1963.
  • K-H. Neeb, Towards a Lie theory for locally convex groups, Japanese. J. Math., 1 (2006), 291 - 468.
  • K-H. Neeb, Borel-Weil theory for loop groups, In: Huckleberry A., Wurzbacher T. (eds) In nite dimensional Kahler manifolds. DMV Seminar Band, 31 (2001), 179 - 229.
  • R. Palais, Lusternik-Schnirelman theory on Banach manifolds, Topology, 5 (2) (1966), 115 - 132.
  • R. Palais, Morse theory on Hilbert manifolds, Topology, 2 (4)(1966), 299 - 340.
  • R. Palais, The Morse lemma for Banach spaces, Bull. Amer. Math. Soc., 75 (5) (1969), 968 - 972.
  • R. Palais, Foundations of Global Non-Linear Analysis, Watham, Mass.: Dept. of Mathematics, Brandeis University, 1966.
  • A. Szulkin, Ljusternik-Schnirelmann theory on C1-manifolds, Annales de l'I. H. P., section C, 5 (2)(1988), 119 - 139
  • R. S. Sadyrkhanov, On in nite dimensional features of proper and closed mappings, Proc. Amer. Math. Soc., 98 (4)(1986), 643 - 648.
  • S. Smale, Morse theory and a non-linear generalization of the Dirichlet problem, Ann. Math., 80 (2)(1964), 382 - 396.
  • T. N. Subramaniam, Slices for the actions of smooth tame Lie groups, PhD thesis, Brandeis University, 1984.
  • A. J. Tromba, A general approach to Morse theory, J. Di er. Geom., 12 (1)(1977), 47 - 85.
  • K. Uhlenbeck, Morse theory on Banach manifolds, J. Funct. Anal, 10 (4)(1972), 430 - 445.

Abstract Views: 429

PDF Views: 0




  • A Lusternik-Schnirelmann Type Theorem for C1-Frechet Manifolds

Abstract Views: 429  |  PDF Views: 0

Authors

Kaveh Eftekharinasab
Institute of Mathematics of NAS of Ukraine, Topology Lab, Kyiv, Ukraine
Ivan Lastivka
National Aviation University, Higher Mathematics Department, Kyiv, Ukraine

Abstract


We prove a Lusternik-Schnirelmann type theorem for a C1- function φ : M → R, where M is a connected infinite dimensional Frechet manifold of class C1. To this end, in this context we prove the so-called Deformation Lemma and by using it we derive the result generalizing the Minimax Principle.

Keywords


Lusternik-Schnirelmann Theorem, Frechet Finsler Manifolds, Deformation Lemma

References





DOI: https://doi.org/10.18311/jims%2F2021%2F27836