Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Certain inequalities of Kober and Lazarevic type


Affiliations
1 Department of Mathematics, K. K. M. College, Manwath 431505, India
2 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
     

   Subscribe/Renew Journal


In this work, the authors present new lower and upper bounds for cos x and cosh x, thus improving some generalized inequalities of Kober and Lazarevic type.


Keywords

Lazarevi’c Inequality, Kober’s Inequality, Sharp Bounds, Exponential Bounds, Hyperbolic Cosine.
Subscription Login to verify subscription
User
Notifications
Font Size


  • G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Conformal Invariants, Inequalities and Quasiconformal Maps, John Wiley and Sons, New York, 1997.
  • Y. J. Bagul, On exponential bounds of hyperbolic cosine, Bull. International Math. Virtual Institute, 8(2)(2018), 365–367.
  • B. A. Bhayo and J. S´andor, On Jordan’s and Kober’s inequality, Acta Et Commentationes Universitatis tartuensis de Mathematica, 20(2)(2016), 111–116.
  • M. Bencze, S.-G. Li and S.-H. Wu, Sharpened versions of Mitrinovi´c-Adamovi´c, Lazarevi´c and Wilker’s inequalities for trigonometric and hyperbolic functions, J. Nonlinear Sci. Appl., 9 (2016), 2688–2696.
  • C. P. Chen, F. Qi and J. W. Zhao, Three inequalities involving hyperbolically trigonometric functions, RGMIA Res. Rep. Coll., 6(3)(2003), Art. 4, 437–443.
  • Y. Chu, Y. LV and G. Wang, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett., 25(2012), 505–508.
  • Y. Chu, G. Wang and X. Zhang, Extensions and sharpenings of Jordan’s and Kober’s inequalities, J. Inequal. Pure. Appl. Math., 7(2)(2006), Article 63, 3 pages.
  • R. Kl´en, M. Visuri and M. Vuorinen, On Jordan type inequalities for hyperbolic functions, J. Inequal. and Appl., (2010), Art. ID 362548, 14 pages.
  • H. Kober, Approximation by integral functions in the complex domain, Trans. Amer. Math. Soc., 56(1)(1944), 7–31.
  • I. Lazarevi´c, Neke nejednakosti sa hiperbolickim funkcijama, Univerzitet u Beogradu. Publikacije Elektrotechni?ckog Fakulteta. Serija Matematika i Fizika, 170 (1966), 41–48.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, 1970.
  • R. Redheffer, Problem 5642, Amer. Math. Monthly, 76 (1969), 422.
  • J. S´andor, On new refinements of Kober’s and Jordan’s trigonometric inequalities, Notes Number Theory and Discrete Math., 19(1)(2013), 73–83.
  • J. S´andor, Refinements of the Mitrinovi´c - Adamovi´c inequality, with application, Notes Number Theory and Discrete Math., 23(1)(2017), 4–6.
  • L. Zhu and J. Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Comput. Math. Appl., 56(2)(2008), 522–529.

Abstract Views: 216

PDF Views: 0




  • Certain inequalities of Kober and Lazarevic type

Abstract Views: 216  |  PDF Views: 0

Authors

Yogesh J. Bagul
Department of Mathematics, K. K. M. College, Manwath 431505, India
Satish K. Panchal
Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India

Abstract


In this work, the authors present new lower and upper bounds for cos x and cosh x, thus improving some generalized inequalities of Kober and Lazarevic type.


Keywords


Lazarevi’c Inequality, Kober’s Inequality, Sharp Bounds, Exponential Bounds, Hyperbolic Cosine.

References





DOI: https://doi.org/10.18311/jims%2F2022%2F20737