Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Module Basis for Generalized Spline Modules


Affiliations
1 Department of Mathematics, Navrachana University, Vadodara - 391410, India
     

   Subscribe/Renew Journal


Let G = (V,E) be a graph of order n. Let R be a commutative ring and I denote the set of all ideals of R. Let ? : E ? I be an edge labeling. A generalized spline of (G, ?) is a vertex labeling F : V ? R such that for each edge uv, F(u) ? F(v) ? ?(uv). The set R(G,) of all generalized splines of (G, ?) is an R-module. In this paper we determine conditions for a subset of R(G,?) to form a basis of R(G,?) for some classes of graphs.


Keywords

Generalized Spline Modules, Dutch Windmill Graph, Isomorphic Graphs.
Subscription Login to verify subscription
User
Notifications
Font Size


  • S. Altinok and S. Sarioglan, Basis criteria for generalized spline modules via determinant, Discrete Math., 344 (2021), 112223.
  • S. Altinok and S. Sarioglan, Flow-up bases for generalized spline modules on arbitrary graphs, J. Algebra Appl. 20(10), 2150180 (2021).
  • M. Atiyah and I. MacDonald, Introduction To Commutative Algebra, Addison-Wesley, Reading, Mass. 1969.
  • L. J. Billera and L. L. Rose, A dimension series for multivariate splines, Discrete Comput. Geom., 6(2) (1991), 107–128.
  • N. Bowden and J. Tymoczko, Splines mod m, ArXiv e-prints (2015).
  • J. P. Dalbec and H. Schenck, On a conjecture of rose, J. Pure Appl. Algebra, 165 (2)(2001), 151–154.
  • M. R. DiPasquale, Shellability and freeness of continuous splines, J. Pure Appl. Algebra, 216(11) (2012), 2519-2523.
  • E. Gjoni, Basis criteria for n-cycle integer splines, Bard College Senior Projects Spring 2015, Bard College, NY 2015.
  • E. Estrada, When local and global clustering of networks diverge, Linear Algebra Appl., 488 (2016), 249–263.
  • S. Gilbert, S. Polster and J. Tymoczko, Generalized splines on arbitrary graphs, Pac. J. Appl. Math., 281 (2016), 333–364
  • R. Haas, Module and vector space bases for spline spaces, J. Approx. Theory, 65(1) (1991), 73-89.
  • M. Handschy, J. Melnick and S. Reinders, Integer Generalized Splines on Cycles, arXiv:Combinatrics (2014).
  • F. Harary. Graph Theory, Addison-Wesley, Reading, MA. 1984.
  • E. R. Mahdavi, Integer generalized splines on the diamond graph, Bard College Senior Projects Spring 2016, Bard College, NY. 2016.
  • L. L. Rose, Graphs, syzygies and multivariate splines, Discrete Comput. Geom., 32(4) (2004), 623-637.

Abstract Views: 217

PDF Views: 0




  • Module Basis for Generalized Spline Modules

Abstract Views: 217  |  PDF Views: 0

Authors

Radha Madhavi Duggaraju
Department of Mathematics, Navrachana University, Vadodara - 391410, India
Lipika Mazumdar
Department of Mathematics, Navrachana University, Vadodara - 391410, India

Abstract


Let G = (V,E) be a graph of order n. Let R be a commutative ring and I denote the set of all ideals of R. Let ? : E ? I be an edge labeling. A generalized spline of (G, ?) is a vertex labeling F : V ? R such that for each edge uv, F(u) ? F(v) ? ?(uv). The set R(G,) of all generalized splines of (G, ?) is an R-module. In this paper we determine conditions for a subset of R(G,?) to form a basis of R(G,?) for some classes of graphs.


Keywords


Generalized Spline Modules, Dutch Windmill Graph, Isomorphic Graphs.

References





DOI: https://doi.org/10.18311/jims%2F2022%2F29295