Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Approximation of Fourier Series of Functions in Besov Space by Borel Means


     

   Subscribe/Renew Journal


In the present article, a result on degree of approximation of Fourier series of functions in the Besov space by Borel mean is established.


Keywords

Degree of Approximation, Banach Space, Holder Space, Besov Space, Fourier Series, Borel Mean.
Subscription Login to verify subscription
User
Notifications
Font Size


  • G. Das, A. K. Ojha and B. K. Ray, Degree of approximation of functions associated with Hardy-Littlewood series in the Holder metric by Borel Means, J. Math. Anal. Appl., 219, article no. AY975797, (1998), 279–293.
  • G. H. Hardy, Divergent Series, Oxford University Press, First Edition, 1949.
  • S. Lal and Shireen, Best approximation of functions of generalized Zygmund class by Matrix-Euler summability mean of Fourier series, Bull. Math. Anal. Appl., 5(4)(2013), 1–13.
  • F. Moricz and J. Nemeth, Generalized Zygmund classes of functions and strong approximation of Fourier series, Acta. Sci. Math., 73(2007), 637–647.
  • L. Nayak, G. Das and B. K. Ray, Degree of approximation of Fourier series of functions in Besov space by Defreed Ces‘aro mean, J. Indian Math. Soc., 83(2016), 161–179.
  • H. K. Nigam, The degree of approximtion by product means, Ultra scientist, 22(3)M(2010), 889–894.
  • H. K. Nigam, On approximation in generalized Zygmund class, Demonstr. Math. (De Gruyter), 52(2019), 370–387.
  • H. K. Nigam and M. Hadish, Best approximation of functions in generalized Holder class, J. Inequal. Appl., 2018: 276 (2018), 1–15.
  • P. Parida, S. K. Paikray, M. Dash and U. K. Misra, Degree of approximation by product (N-,pn,qn)(E,q) summability of Fourier series of a signal belonging to Lip(?,r)-class, TWMS J. App. Engg. Math., 9(4)(2019), 901–908.
  • S. Prosdor?, Zur Konvergenz der Fourier richen Holder stetiger Funktionen, Math. Nachar, 69(1975), 7–14.
  • A. D. Ronald and G. Lorentz, Constructive approximation, Springler-Verlag, Berlin, 1993.
  • M. V. Singh and M. L. Mittal, Approximation of functions in Besov space deferred Cesa`ro mean, J. Inequal Appl., (2016), Article ID: 118.
  • K. Weierstrass, Uber die analytische sogenannter willkurlicher functionen einer reelen veranderlichen, Verl. d. Kgl. Akad d. Wiss. Berlin, 2(1885), 633–639.
  • A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), 47–56.
  • A. Zygmund, Trigonometric Series (Vol.I and II combined), Cambridge University Press, New York, 1993.

Abstract Views: 226

PDF Views: 0




  • Approximation of Fourier Series of Functions in Besov Space by Borel Means

Abstract Views: 226  |  PDF Views: 0

Authors

B. P Padhy
, India
A Mishra
, India
S Nanda
, India

Abstract


In the present article, a result on degree of approximation of Fourier series of functions in the Besov space by Borel mean is established.


Keywords


Degree of Approximation, Banach Space, Holder Space, Besov Space, Fourier Series, Borel Mean.

References





DOI: https://doi.org/10.18311/jims%2F2022%2F26422