Open Access
Subscription Access
Open Access
Subscription Access
A Note on Isolate Domination Number of a Cubic Graph
Subscribe/Renew Journal
In this note we provide a solution to the problem “Find a structural characterization of cubic graph for which the isolate domination number equals one plus its domination number.” We show that if G is a cubic graph of order n and if 6 | n, then the isolate domination number of G is the same as the domination number of G. We also prove that if G is a connected cubic graph with diam(G) > 2, then the isolate domination number is the same as the domination number.
Keywords
Domination Number, Isolate Domination Number, Total Domination Number, Cubic Graphs, Private Neighbour.
Subscription
Login to verify subscription
User
Font Size
Information
- C. Berge, Theorie des graphes et ses applications, ,Collection Universitaire de Mathematiques, Dunod, Paris, 1958.
- C. Berge, Theory of Graphs and its Applications , Methuen, London, 1962.
- S. T. Bhangale and M. M. Pawar, Isolate and independent domination number of some classes of graphs , AKCE Int. J. of Graphs and Combinatorics, 16 (2019), 110–115.
- I. S. Hamid and S. Balamurugam, Isolate domination in graphs Arab J. Maths. Sci., 22 (2015), 232–241.
- F. Harary, Graph theory, Addison-Wesley Publishing Company, Inc 1969.
- M. A Henning and A. Yeo, Total Domination in Graphs Springer Monographs in Mathematics, 2013.
- O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ.,38 (Amer. math. Soc., Providence, RI) 1962.
- N. J. Rad, Some notes on isolate domination in graphs AKCE Int. J. Graphs and Combinatorics, 14 (2017), 112–117.
- D. B. West, Introduction to Graph Theory, (second edition), Pearson Education, Inc., New Jersey, 2001.
Abstract Views: 189
PDF Views: 0