Open Access
Subscription Access
Open Access
Subscription Access
On Star-σ-Countably Compact Spaces
Subscribe/Renew Journal
A space X is said to be star-σ-countably compact if for every open cover U of X, there exists a σ-countably compact subset C of X such that St(C, U) = X. In this paper, we investigate the relationship between star-σ-countably compact spaces and other related spaces and also study the topological properties of star-σ-countably compact spaces.
Keywords
Compact, Starcompact, σ-Countably Compact, Lindel¨of, Covering, Star-Covering, Topological Space.
Subscription
Login to verify subscription
User
Font Size
Information
- E. K. van Douwen, G. K. Reed, A. W. Roscoe and I. J. Tree, Star covering properties, Topology Appl., 39 (1991), 71–103.
- R. Engelking, General topology, PWN, Warszawa, 1977.
- W. M. Fleischman, A new extension of countable compactness, Fund. math., 67 (1971), 1–7.
- M. V. Matveev, A survey on star-covering properties, Topology Atlas, preprint no. 330, 1998.
- S. Mr´owka, On completely regular spaces, Fund. Math., 41 (1954), 105–106.
- S. Singh, Set starcompact and related spaces, Afr. Mat., 32 (2021), 1389–1397.
- Y. K. Song and Yin Zheng, On star-C-Menger spaces, Quaestiones Mathematicae, 37 (2014), 337–347.
- Y. K. Song, On L-starcompact spaces, Czech. Math. J., 56 (2006), 781–788.
- Y. K. Song, On K-starcompact spaces, Bull. Malays. Math. Sci. Soc., 30 (2007), 59–64.
- Y. K. Song, On C-starcompact spaces, Math. Bohemica, 133 (2008), 259–266.
- Y. K. Song, On σ-starcompact spaces, App. Gen. Topol., 9(2) (2008), 293–299.
- R. C. Walker, The stone-Cech compactification, Berlin, 1974.
Abstract Views: 189
PDF Views: 0