Open Access Open Access  Restricted Access Subscription Access
Open Access Open Access Open Access  Restricted Access Restricted Access Subscription Access

Preference Intuitionistic Fuzzy Rough Relation and its Theoretical Approach


Affiliations
1 Department of Mathematics, Bir Bikram Memorial College, Agartala-799004, Tripura, India
2 Estudiante de Doctorado en Matemticas, Magister en Ciencias Matemticas, Universidad de Antioquia, Medelln, Colombia
     

   Subscribe/Renew Journal


Relations on intuitionistic fuzzy sets (IFSs) and rough sets (RSs) have recently received a lot of attention for uncertainty. IFSs can effectively represent and simulate the uncertainty and diversity of judgment information offered by decision-makers. In comparison to fuzzy sets (FSs), IFSs are highly beneficial for expressing vagueness and uncertainty more accurately. In this paper, we introduce a novel concept of preference intuitionistic fuzzy rough relation (PIFRR) as an extension of intuitionistic fuzzy rough relation (IFRR) and partially included intuitionistic fuzzy rough relation (PIIFRR). Based on the concepts of IFRR and PIIFRR a theoretical approach of the PIFRR is established and some useful properties are investigated. Finally, we introduce the concepts of Semi-connected and totally semi-connected IFRRs and study under which assumptions PIFRRs fulfil these properties.

Keywords

Fuzzy Set and Rough Set and Intuitionistic Fuzzy Set, Preference Relation and Atanassov’s Operator.
Subscription Login to verify subscription
User
Notifications
Font Size


  • K. Atanassov, Intutionistic fuzzy sets, Fuzzy Sets and Systems, 64 (1986), 87 - 96.
  • F. Chiclana, E. Herrera-Viedma, S. Alonso, R. A. M. Pereira, Preferences and consistency issues in group decision making, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, Springer-Verlag, Berlin, (2008), 219 - 237.
  • A. K. Das, On partially included intuitionistic fuzzy rough relations, Afrika Matematika, 27 (2016), 993 - 1001.
  • G. Deschrijver, E. E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems, 136 (2003), 333 - 361.
  • L. A. Fono, N. G. Njanpong, Arrow-type results under intuitionistic fuzzy preferences, New Mathematics and Natural Computation, 9 (2013), 97 - 123. doi:10.1142/S1793005713500075.
  • S. P. Jana, S. K. Ghosh, Intuitionistic fuzzy rough sets, Notes on Intuitionistic Fuzzy Sets, 8 (2002), 1 - 18.
  • E. Marinov, K. Atanassov, Partially continuous pretopological and topological operators for intuitionistic fuzzy sets, Iranian J. Fuzzy Syst., 17 (2020), 1 - 15.
  • A. Mukherjee, A. K. Das, Intuitionistic fuzzy rough relations, Annals of Fuzzy Mathematics and informatics, 6 (2013), 115 - 126.
  • S. Nanda, S. Majumdar, Fuzzy rough sets, Fuzzy Sets and Systems, 45 (1992), 157 - 160.
  • Z. Pawlak, Rough sets Int. J. Comput. Inform. Sci., 11 (1982), 341–356.
  • M. Roubens, P. Vincke, Preference Modelling, Lecture Notes in Economics and Mathematical Systems Springer-Verlag, Berlin, 1985.
  • Z. Xu, Intuitionistic preference relations and their application in group decision making, Informotion Sciences, 17 (2007), 2363 - 2379.
  • R. R. Yager, Z. Xu, Intuitionistic and interval-valued intuitionistic fuzzy preference relations and their measures of similarity for the evaluation of agreement within a group, Fuzzy Optimization and Decision Making (Springer), 8 (2009), 123 - 139.
  • L. A. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338 - 353.
  • L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci., 3 (1971), 177 - 200.

Abstract Views: 315

PDF Views: 12




  • Preference Intuitionistic Fuzzy Rough Relation and its Theoretical Approach

Abstract Views: 315  |  PDF Views: 12

Authors

Ajoy Kanti Das
Department of Mathematics, Bir Bikram Memorial College, Agartala-799004, Tripura, India
Carlos Granados
Estudiante de Doctorado en Matemticas, Magister en Ciencias Matemticas, Universidad de Antioquia, Medelln, Colombia

Abstract


Relations on intuitionistic fuzzy sets (IFSs) and rough sets (RSs) have recently received a lot of attention for uncertainty. IFSs can effectively represent and simulate the uncertainty and diversity of judgment information offered by decision-makers. In comparison to fuzzy sets (FSs), IFSs are highly beneficial for expressing vagueness and uncertainty more accurately. In this paper, we introduce a novel concept of preference intuitionistic fuzzy rough relation (PIFRR) as an extension of intuitionistic fuzzy rough relation (IFRR) and partially included intuitionistic fuzzy rough relation (PIIFRR). Based on the concepts of IFRR and PIIFRR a theoretical approach of the PIFRR is established and some useful properties are investigated. Finally, we introduce the concepts of Semi-connected and totally semi-connected IFRRs and study under which assumptions PIFRRs fulfil these properties.

Keywords


Fuzzy Set and Rough Set and Intuitionistic Fuzzy Set, Preference Relation and Atanassov’s Operator.

References





DOI: https://doi.org/10.18311/jims%2F2023%2F27812