Open Access
Subscription Access
Open Access
Subscription Access
3-Isogonal Planar Tilings are not 3-Isogonal on the Torus
Subscribe/Renew Journal
A 3-isogonal tiling is an edge-to-edge tiling by regular polygons having 3 distinct transitivity classes of vertices. We know that there are sixty-one distinct 3-isogonal tilings on the plane. In this article, we discuss and determine the bounds of the vertex orbits of the plane’s 3-isogonal lattices on the torus and will show that these bounds are sharp.
Keywords
Covering Maps, Isogonal Maps, Symmetric Group.
Subscription
Login to verify subscription
User
Font Size
Information
- D. Bhowmik and A. K. Upadhyay, Some semi-equivelar maps of Euler characteristics−2, Nat. Acad. Sci. Lett., 44 (2021), 433-436.
- D. Bhowmik and A. K. Upadhyay, A classification of semi-equivelar maps on the surface of Euler characteristic -1, Indian J. Pure Appl. Math., 52 (2021), 289-296.
- B. Datta, Vertex-transitive covers of semi-equivelar toroidal maps, https://arxiv.org/abs/2004.09953.
- B. Datta and D. Maity, Semi-equivelar and vertex-transitive maps on the torus, Beitr¨age Algebra Geom., 58 (2017), 617-634.
- B. Datta and D. Maity, Semi-equivelar maps on the torus and the Klein bottle are Archimedean, Discrete Math., 341 (12) (2018), 3296-3309.
- B. Gr¨unbaum and G. C. Shephard, Tilings by regular polygons: Patterns in the plane from Kepler to the present, including recent results and unsolved problems, Math. Mag., 50 (1977), 227-247.
- B. Gr¨unbaum and G. C. Shephard, The geometry of planar graphs. Combinatorics (Swansea), London Math. Soc. LNS, Cambridge Univ. Press, Cambridge, 52 (1981), 124-150.
- M. M. Kharkongor, D. Bhowmik and D. Maity, Quotient maps of 2,3-uniform tilings of the plane on the torus, https://arxiv.org/abs/2101.04373.
- O. Kr¨otenheerdt, Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene. I, II, III, Wiss. Z. Martin-LUther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 18,19 (1969, 1970), 18:273-290, 19:19-38, 97-241.
- E. H. Spanier, Algebraic Topology, Springer-Verlag, New York, 1966.
Abstract Views: 322
PDF Views: 0